
Working with Proxy-

Applications: Interesting

Findings, Lessons Learned,

and Future Directions
BID WS @PPoPP’22 – 02. Apr. 2022

Jens Domke

Disclaimer

2

 No in-depth presentation into single scientific topic

 High-level examples to encourage out-of-the-box thinking and

questioning “always done this way” and revisiting old papers

 Intension:

Strengthen collaboration between domain scientists and

HPC architects to develop better Supercomputers

Jens Domke

Motivation – Heterogeneous Future

3

 The “Cambrian explosion” was just the start! (50+ in this fig.)

Source:

A. Reuther, et al.

“Survey of Machine

Learning Accelerators”,

2020

Jens Domke

Motivation – Heterogeneous Future

4

 Increase on almost all fronts:

 Specialized chips in phones, FPGAs in Intel/AMD CPUs, …

 Number of programming languages (Rust, Julia, …) and

paradigms (CUDA, HIP, oneAPI, Kokkos, RAJA, …)

 New workloads: containerization, DL/ML, big data, workload-

chaining, etc.

 (except for networks luckily and also unfortunately)

 How to make sense of it all? (and fast)

 How to determine the best architecture per site?

Jens Domke

Challenges – Future Scale-out & Diversification

5

 No more gains from Moore’s law

 Bigger HPC systems w/ more nodes (maybe island design for specialization)

 Larger interconn. networks

Supercomputer Fugaku

 >158k compute nodes

 3 networks / topologies

 CN: 24x23x24 TofuD

(w/ 2x3x2 subgr.) as 6D torus

 Storage: EDR InfiniBand

for every 16th CN (with fat-tree? topology)

 Management + outside world: Ethernet

Source: Y. Tsujita et al. “Status of

Lustre-Based Filesystem at the

Supercomputer Fugaku”

Jens Domke

Proxy-Apps: Traditional approach…

6

“Use benchmark X and run workload Y and report back.”

--HPC procurement

Jens Domke

Opportunity for new topologies – HyperX

Theoretical Advantages (over Fat-Tree)

 Reduced HW cost (less AOC / SW)

 Only needs 50% bisection BW

Full marathon worth of IB and

ethernet cables re-deployed

Multiple tons of

equipment moved around

1st rail (Fat-Tree) maintenance

Full 12x8 HyperX constructed

And much more …
- PXE / diskless env ready
- Spare AOC under the floor
- BIOS batteries exchanged

 First large-scale 2.7 Pflop/s (DP)

HyperX installation in the world!

Fig.1: HyperX with n-dim. integer

lattice (d1,…,dn) base structure

fully connected in each dim.

TokyTech’s 2D HyperX:

 24 racks (of 42 T2 racks)

 96 QDR switches (+ 1st rail)
without adaptive routing

 1536 IB cables (720 AOC)

 672 compute nodes

 57% bisection bandwidth

Fig.2: Indirect 2-level Fat-Tree

 Lower latency (less hops)

 Fits rack-based packaging

J. Domke et al. "HyperX Topology:

First at-scale Implementation

and Comparison to the Fat-Tree"
19

Jens Domke

Opportunity for new topologies – HyperX

 TSUBAME2’s older gen. of QDR IB hardware

has no adaptive routing

 HyperX with static/minimum routing suffers

from limited path diversity per dimension

 results in high congestion and

low (effective) bisection BW

 Option 1: Alternative Job Allocation

 Option 2: Non-minimal,

Pattern-aware Routing (PARX)

 combine

Measured BW in mpiGraph for 28 NodesHyperX
intra-rack
cabling

Mitigation

Strategies???

Forced
detours

Minimum
paths

20

Jens Domke

1:1 comparison (as fair as possible) of
672-node 3-level Fat-Tree and 12x8 2D HyperX
 NICs of 1st and 2nd rail even on same CPU socket

 Given our HW limitations (few “bad” links disabled)

Wide variety of benchmarks and configurations
 3x Pure MPI benchmarks

 9x HPC proxy-apps

 3x Top500 benchmarks

 4x routing algorithms (incl. PARX)

 3x rank-2-node mappings

 2x execution modes

Primary research questions

Q1: Will reduced bisection BW
(57% for HX vs. ≥100% for FT)
impede performance?

Q2: Two mitigation strategies
against lack of AR? (e.g.
placement vs. “smart” routing)

Opportunity for new topologies – HyperX

Fig.4: Baidu’s (DeepBench) Allreduce (4-byte float) scaled 7 672 cn (vs. “Fat-tree / ftree / linear” baseline)

1. Placement mitigation can alleviate bottleneck
2. HyperX w/ PARX routing outperforms FT in HPL
3. Linear good for small node counts/msg. size
4. Random good for DL-relevant msg. size (Τ+ − 1%)
5. “Smart” routing suffered SW stack issues
6. FT + ftree had bad 448-node corner case

3.

4.

5.

6.

Conclusion
HyperX topology is
promising and
cheaper alternative
to Fat-Trees (even
w/o adaptive R) !

Fig.3: HPL (1GB pp, and 1ppn); scaled 7 672 cn

1.

2.

21

Jens Domke

Proxy-Apps: Motivating vendors / domain

scientists…

10

“Wanna do HPC? Then you need many and fast FP64 Units”

--most HPC beginner classes

Jens Domke

More Flop/s more science?!

11

 Thanks to the (curse of) the TOP500 list, the HPC community (and vendors) are chasing higher

FP64 performance, thru frequency, SIMD, more FP units, …

 Motivation:

 Less FP64 units

 Investigating many proxy-applications:

 %FP32 vs. %FP64 vs. %Integer

 Integer (+DP) heavy (>50%; 16 of 22)

 Only 4 w/ FP32

 Only 1 mixed precision

 Saves power

 Free chip area (ex: FP16)

 Less divergence of “HPC-capable”

CPUs from mainstream processors

J. Domke et al. "Double-precision FPUs in High-Performance Computing: an Embarrassment of Riches?"

Jens Domke

Compare Time-to-Solution in Solver

12

 Only 3 apps seem to suffer from missing FP64 unit

(MiniTri: no FP; FFVC: only int+FP32)

 Options for memory-bound applications (almost all):

 Invest in memory-/data-centric architectures

 Move to FP32/mixed precision less memory pressure

 Options for compute-bound applications:

 Brace for less FP64 units (driven by market forces)

and less “free” performance (10nm, 7nm, 3nm, …then?)

Not much

improvement

Jens Domke

Proxy-Apps: Influencing architecture…

13

“Wanna do HPC? Then you need fast [S/D]GEMM.”

--every HPC beginner class

Jens Domke

BLAS / GEMM utilization in HPC Applications

14

 Analyzed various data sources:

 Historical data from K computer: only 53,4% of node-hours (in FY18) were consumed by

applications which had GEMM functions in the symbol table

 Library dependencies: only 9% of Spack packages have direct BLAS lib

dependency (51.5% have indirect dependency)

 TensorCore benefit for DL: up to 7.6x speedup for MLperf kernels

 GEMM utilization in HPC: sampled across 77 HPC benchmarks (ECP proxy,

RIKEN fiber, TOP500, SPEC CPU/OMP/MPI) and measured/profiled via

Score-P and Vtune

J. Domke et al. "Matrix Engines for High Performance Computing:

A Paragon of Performance or Grasping at Straws?"

Jens Domke

Estimated Benefit by MEs for HPC Centers

15

 Thought experiment: Assume we

have/had GEMM units in past or

future systems.

 Known: node-hour by domain

 Sample application with

highest BLAS utilization

 Estimate the node-hour

reduction assuming different

speedup by ME (2x–8x is

realistic dep. on precision)

 Future system includes 20%

DL workloads, other science

domains ~10% each

 Results w/ ideal conditions + 4x ME speedup: 5.3% less on K, 10.8% @ANL, 23.8% future system

 HPC can utilize MEs when they come for free, but it’s no magic bullet as for DL workloads

 Explore more/other alternatives for Fugaku-next!

Jens Domke

Proxy-Apps: Functionality and Regression

Testing…

16

“Porting an application to A64FX? Just use fcc and –Kfast.”

--Fujitsu

Jens Domke

 Issue: unexpected advantage of Xeon vs. A64FX in PolyBench

 Performance portability (x86A64FX) not easy to achieve

 Testing >100 Kernels and HPC

Workloads on Fugaku

 Three compilers and

five variations

(2x Fujitsu,

2x LLVM12,

& GNU10)

“Silver bullet” compiler choice for A64FX?

17
J. Domke "A64FX – Your Compiler You

Must Decide!"

Jens Domke

Results for x500, Babel, ECP, Fiber

18

 Surprising ≈5% gain for HPL (LLVM or FJclang) despite main time in SSL2

 Same for DLproxy (matmul convolution; SSL2) but even higher gain w/ GNU

 GNU: 51% runtime

reduction in stream

(eq. to higher GB/s)

 For ECP apps use

LLVM or GNU and

for Fiber apps use

Fujitsu’s compiler

 Avg. speedup: 1.65x

(median 1.09x) with

max. 6.7x in XSBench

 [4 | 12] rarely best option

Jens Domke

“Silver bullet” compiler choice for A64FX?

19

Conclusions:

 C1: recomm. usage model of 4 ranks and 12 threads often suboptimal

 C2: no “silver bullet” compiler for A64FX (yet)

 Dep. on situation, but some hint: Fujitsu for Fortran codes, and GNU for integer-

intensive apps, and any clang-based compilers for C/C++

 C3: Twitter summary: “if Xeon is 70x faster than A64fx, suspect the compiler”

 Test all available compilers, and explore other rank/thread mappings!

Implications for Fugaku Users:

 LLVM 13 incl. “classic” flang (source /home/apps/oss/llvm-v13.0.0/init.sh)

 SVE support still alpha expect even more performance with v14

 Using Fujitsu’s SSL2 not always trivial or error-free

Jens Domke

Proxy-Apps: Many years later …

20

“Uff... (to say it politely).”

--me

Jens Domke

Drowning in overlapping Proxy-Apps (>>100)

21

 HPC challenge benchmark (HPCC)

 Exascale Computing Project (ECP) Proxy Applications

 Center for Efficient Exascale Discretizations (CEED) Miniapps

 DOE’s CORAL-2 Benchmarks and RIKEN’s Fiber / TAPP

 European Union’s PRACE Unified European Application Benchmark Suite

(UEABS)

 SPEC, BenchCouncil,

Intel’s HiBench,

DeathStarBench,

Baidu’s DeepBench,

and MLCommons’ MLPerf

 Traditional: HPL, HPCG, stream, Graph, and Intel’s IMB, …

Source: D. Richards et al. “Best Practices for Using

Proxy Apps as Benchmarks”

Jens Domke

Lessons-Learned from using Proxy-Apps

22

 Inherently complex and implementation biases

 Mostly implemented in Fortran and C[/C++], and tuned over the years

 Highly tuned CUDA (and “legacy” CPU) from ECP efforts

 Huge porting & maintenance overhead

 Macros, separate code paths, hand-written makefiles, …

 Costly refactoring for: data layouts, parallelization strategies, accelerators

 Insufficient inputs, testing, documentation

 Issues with non-std compilers and applying perf. analysis tools

 Strong- and weak-scaling, varying input sizes, independent of #MPI/#OMP

 Lack of efficiency reporting

 How much performance achieved vs. the peak theoretical performance?

Jens Domke

Let’s clean up this mess …

23

“Octopodes to the rescue.”

--RIKEN & DOE

Jens Domke 24

Fugaku Enhancement & Co-Design for Future

Source: www.pinterest.fr/pin/145170787976811341/

 Superseding current proxy-apps: Octopodes

 Downsides w/ Fiber/proxy-apps (s. Fugaku R&D)

 On-going collaboration / brainstorming phase

with DOE labs (position paper release in Apr.’22)

 Set of highly-parameterizable, easily-amendable,

DWARF-like problem representations

 Common “language” between HPC users,

system operators, co-designers, and vendors

to describe the to-be-solved scientific problems:

What needs to be computed, and how it can be computed?

 Apply ML to identify, parameterize, and categorize compute phases
S. Matsuoka, J. Domke, M. Wahib, A. Drozd, A. Chien, R. Bair, J. S. Vetter, J. Shalf

"Preparing for the Future –Rethinking Proxy Applications“

to appear in Computing in Science & Engineering

Jens Domke 25

Example of one Octopode: Matmul

 Input shapes: such as squared, rectangular, and tall/skinny

 Various numerical precisions (i.e., from fp128 to bfloat16, etc)

 Batched and non-batched executions modes

 Dense matrix-matrix operations, matrix-vector, sparse matrices

 Sparse matrix: random, realistic blocks, Matrix Market

 Use C++ templating to generate as many variants as possible

to train ML models

 One Octopode for each distinct compute phase or math kernel

 In-between Berkeley DWARFs and Proxy-Apps

Jens Domke 26

Usage of Octopodes for Co-Design
 “What needs & how can it be computed” not “Here is how you have to do it”

 For performance modeling of real workloads: identify compute phases which

can be mapped to one or more Octopodes combine perf. model of the ‘easier

to understand’ Octopodes approx. perf. model of full workloads

 For vendors:

 Allowed tuning freedom for the Octopodes, i.e., changes of algo., implementation,

integer/float. precision, data layout, etc., as long as intended result is the same

 Accurately model consumer workloads Less over/under-selling of hardware

 Porting of user codes to new system:

 Act as demonstrator for users to show how to port

 ML/AI to identify phases can be used as helper for porting of real codes

 Better suited for co-design tools, e.g. compiler tests, regression testing,

simulators (gem5/SST/CODES/…), quick ”What-If” tools, etc.

Jens Domke 27

 Better & versatile simulators

 Consolidating and enhancing

existing infrastructure

 More testbeds of diff. scales

 Some netw. issues manifest at scale

 Repurpose decommissioned system

 Shared access

 Better performance metrics reflecting

real-life and tools to collect them

 Focus on more async., automated,

easy-to-use for admins

 Cleaner build environments and user

training

Summary and Call for Co-Design Collaboration
 Extensive network co-design

 More insight into apps/workloads

 More bottleneck analysis

 Fix the lack for memory-centric tools

 1! (better) community test suite

 Easy migration, inter-op. testing,
regression testing, etc.

 Octopodes for co-design

Lots of exciting R&D

challenges ahead!

Jens Domke

Job & Collaboration Opportunities

28

 Collaborations and job opportunities:

 We are hiring! Check out our research teams and open positions:

https://www.riken.jp/en/research/labs/r-ccs/ and

https://bit.ly/3faax8v

 Internship/fellowship for students (BachelorPhD):

 Fellowship: https://www.riken.jp/en/careers/programs/index.html

 Internship: https://www.r-ccs.riken.jp/en/about/careers/internship/

 Supercomputer Fugaku:

 Apply for node-hours:

https://www.r-ccs.riken.jp/en/fugaku/user-guide/

 Interactive, virtual tour:

https://www.r-ccs.riken.jp/en/fugaku/3d-models/ and

https://www.youtube.com/watch?v=f3cx4PGDGmg

https://www.riken.jp/en/research/labs/r-ccs/
https://bit.ly/3faax8v
https://www.riken.jp/en/careers/programs/index.html
https://www.r-ccs.riken.jp/en/about/careers/internship/
https://www.r-ccs.riken.jp/en/fugaku/user-guide/
https://www.r-ccs.riken.jp/en/fugaku/3d-models/
https://www.youtube.com/watch?v=f3cx4PGDGmg

