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Overview of Artificial Intelligence

Courtesy: http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/

http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/
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Applications: Style Transfer, Caption Generation, Translation, etc.

Courtesy: https://github.com/alexjc/neural-doodle

Courtesy: 
https://machinelearningmastery.com/inspirational-
applications-deep-learning/

Courtesy: https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html

https://github.com/alexjc/neural-doodle
https://machinelearningmastery.com/inspirational-applications-deep-learning/
https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html
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The Deep Learning (DL) Revolution

Adopted from: http://www.deeplearningbook.org/contents/intro.html

• DL – a revolutionary sub-set of ML

– Feature extraction vs. hand-crafted features

• Key success: Deep Neural Networks (DNNs)

– Everything was invented in late 80s except ?

AI

Machine 
Learning 

(ML)

Deep 
Learning (DL)

Examples:

MLPs, DNNs,
Examples:

Logistic 
Regression

Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning

http://www.deeplearningbook.org/contents/intro.html
http://cse.ohio-state.edu
http://cse.ohio-state.edu
http://cse.ohio-state.edu
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
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Deep Learning on GPUs

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/

• NVIDIA GPUs - driving force for faster DL!

– 90% ImageNet teams used GPUs (2014*)

– DNNs like Inception, ResNet(s), NASNets, and AmoebaNets

– Natural fit for DL workloads – throughput-oriented

• High Performance Computing (HPC) arena

– 135/500 Top HPC systems used NVIDIA GPUs (Nov ’19)

– CUDA-Aware Message Passing Interface (MPI)

• MVAPICH2-GDR, SpectrumMPI, OpenMPI, etc.

– DGX-1/DGX-2- Dedicated DL supercomputers www.top500.org

https://blogs.nvidia.com/blog/2014/09/07/imagenet/
http://www.top500.org/
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Deep Learning on CPUs

1. https://dl.acm.org/citation.cfm?id=1993516, 2. http://ieeexplore.ieee.org/abstract/document/5762730/, 
3. https://dspace.mit.edu/bitstream/handle/1721.1/51839/MIT-CSAIL-TR-2010-013.pdf?sequence=1

• CPUs (dense many-cores) are emerging

• CPUs exist on nodes with GPUs

– Many-core Xeon, POWER9, EPYC, ARM, etc.

• Are CPUs really 10x – 100x slower than GPUs? [1-3]

• But CPU-based DL is getting much better and faster

– MKL-DNN, Vectorization, MPI optimized for large messages

– Data-Parallelism (Intel-Caffe – MLHPC ‘17)

– Model/Hybrid-Parallelism (HyPar-Flow – ISC ‘20)

https://dl.acm.org/citation.cfm%3Fid=1993516
http://ieeexplore.ieee.org/abstract/document/5762730/
https://dspace.mit.edu/bitstream/handle/1721.1/51839/MIT-CSAIL-TR-2010-013.pdf%3Fsequence=1
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Three Key Pieces in the story:

• Computability of DNNs

– HPC enables faster DL!

• Datasets – ImageNet and beyond… 

• State-of-the-art Accuracy – Vision, 
NLP, Translation, etc.

Why HPC and DL? 

Courtesy: A. Canziani et al., “An Analysis of Deep Neural Network Models for Practical Applications”, CoRR, 2016.
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Two Phases in Deep Learning

Courtesy: https://devblogs.nvidia.com/

• Training is compute-intensive

– Many passes over data

– Can take days to weeks

– Model adjustment is done

• Inference

– Single pass over the data

– Takes seconds

– No model adjustment

• Challenge: How to make “Training” faster?

– Exploit HPC hardware and software

https://devblogs.nvidia.com/
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• Data Parallelism (most common)

• Model and Hybrid Parallelism 
(emerging)

• ‘X’-Parallelism 

– ‘X’—> Spatial, Channel, Filter, etc.

Parallelization Strategies for DNN Training

Model ParallelismData Parallelism

Hybrid (Model and Data) Parallelism
Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks


12Network Based Computing Laboratory

• Introduction

• Background

• ML/DL Benchmarks

• Solutions and Case Studies

• Conclusion and Future Directions

Agenda



13Network Based Computing Laboratory

Benchmarking DL Workloads

Benchmarking Scale-up
and Scale-out

performance of DL 
workloads on large-
scale HPC systems
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DNN Training: A Complex Solution Space

Data-Parallel 
Training

Out-of-Core 
Training

Model/Hybrid Parallel
Training

In-depth Performance Characterization and Profiling Analysis

http://cse.ohio-state.edu
http://cse.ohio-state.edu
http://cse.ohio-state.edu
http://cse.ohio-state.edu
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Several Efforts focused on DL Benchmarking

Many benchmarks but 
most are not suitable 

for HPC Systems

DAWNBench
(Stanford)

convnet-benchmarks 
(Soumith Chintala)

tf_cnn_benchmarks
(TensorFlow)

Time Benchmark
(CAFFE)

DL Bench
(Hong Kong 
University)

Deep500
(ETH Zurich)

MLPerf
(mlperf.org – strong industry support)
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Application 
Areas

Frameworks

Communication 
Libraries I/O (?) Compute 

Libraries

Simplified Deep Learning Stack

Language Style Transfer Translation Image Captioning

http://cse.ohio-state.edu
http://cse.ohio-state.edu
http://cse.ohio-state.edu
http://cse.ohio-state.edu
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DL Execution Stack: Details

Distributed Training Middleware 

Communication Middleware

DL Frameworks

HPC Platforms Multi-/Many-core CPUs 
(Intel Xeon, AMD EPYC, and 

IBM POWER9)
NVIDIA GPUs

High-Performance 
Interconnects

(InfiniBand, Omni-Path)

MPI

Caffe

Horovod

NCCL

HyPar-Flow

TensorFlow PyTorch Distributed 
TensorFlow

MXNet PyTorch
Distributed

OSU-
Caffe

Gloo gRPC
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• Single Node
– Computation only - cuDNN, MKL-DNN, etc.

– Communication - shared-memory, CUDA IPC, etc.)

• Multiple Nodes
– Computation - same as single node

– Communication - MPI, NCCL, Gloo, etc.

• Studies Covered in today’s talk
1. CPU vs. GPU comparison is usually unfair -- MLHPC ‘17

2. Different approaches, different end-to-end performance for same DL framework -- CCGrid ’19

3. Communication in DL is not the same as Communication in HPC -- HotI ‘19, IEEE Micro ’19

4. Beyond Data-Parallelism -- HyPar-Flow (accepted to be presented at ISC ’20)

Solutions and Case Studies: Different Benchmarking Directions

Single Node 
Single 

Core/GPU

Single Node 
Multiple 

cores/GPUs

N/A

Multiple 
nodes 

Multiple 
cores/GPUs
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• Faster Convolutions à Faster Training

• Performance of Intel KNL == NVIDIA P100 for AlexNet

• Volta; different league!

1. Caffe: CPUs vs. GPUs 

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training on 
Modern Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17), in conjunction with SC ‘17, Denver, CO

DL	Applications	(Image	Recognition,	Speech	Processing,	etc.)

DL	Frameworks	(Caffe,	TensorFlow,	etc.)

BLAS	Libraries

Hardware

Many-core	GPU	
(Pascal	P100)

Generic	
Convolution	Layer

MKL	Optimized
Convolution	Layer

MKL	2017 cuDNN/cuBLAS

Multi-/Many-core	
(Xeon,	Xeon	Phi)

cuDNN Optimized
Convolution	Layer

Other	BLAS	Libraries

OpenBLASATLAS

Other	Processors

• Caffe – the first framework NVIDIA optimized using cuDNN

– Everyone has optimized it ever since!

• Holistic View of Performance is needed!
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• Out-of-Core workloads – no good baseline to compare

– Easiest fallback is to use CPU –> A lot more CPU memory available than GPU memory

• OC-Caffe-Optimized (Opt) designs provide much better than CPU/Optimized CPU designs!
– DNN depth is the major cause for slow-downs à significantly more intra-GPU communication

OC-Caffe: GPU (Unified Memory) vs. CPU
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A. A. Awan, C-H Chu, H. Subramoni, X. Lu, and DK Panda, “OC-DNN: Exploiting Advanced Unified Memory 
Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training”, HiPC ’18

http://cse.ohio-state.edu
http://cse.ohio-state.edu
http://cse.ohio-state.edu
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• gRPC (official support)

– Open-source – can be enhanced by others

– Accelerated gRPC (add RDMA to gRPC)

• gRPC+X

– Use gRPC for bootstrap and rendezvous

– Actual communication is in “X”

– Xà MPI, Verbs, GPUDirect RDMA (GDR), etc.

• No-gRPC

– Baidu – the first one to use MPI Collectives for TF

– Horovod – Use NCCL, or MPI, or any other future library (e.g. IBM DDL support recently added) 

2. Same Framework, Different Communication Approaches

Distributed 
TensorFlow

gRPC

Accelerated 
gRPC

gRPC+X

gRPC+MPI

gRPC+Verbs

gRPC+GDR

No-gRPC

Baidu-MPI Horovod

MPI

NCCL

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, “Scalable Distributed DNN Training using TensorFlow and 
CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation”, CCGrid ‘19. https://arxiv.org/abs/1810.11112

https://arxiv.org/abs/1810.11112
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• gRPC and gRPC+X designs are slower than No-gRPC designs

• Baidu design (ring-allreduce) still slower than Horovod-NCCL and gRPC+‘X’

• Horovod-MPI is about 10% slower than Horovod-NCCL2. 

Performance Characterization of Distributed TensorFlow
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A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, “Scalable Distributed DNN Training using TensorFlow and 
CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation”, CCGrid ‘19. https://arxiv.org/abs/1810.11112

https://arxiv.org/abs/1810.11112
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library 

• Support for multiple interconnects
– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), and AWS 

EFA

• Support for multiple platforms
– x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs

• Started in 2001, first open-source version demonstrated at SC ‘02

• Supports the latest MPI-3.1 standard

• http://mvapich.cse.ohio-state.edu

• Additional optimized versions for different systems/environments:
– MVAPICH2-X (Advanced MPI + PGAS), since 2011

– MVAPICH2-GDR with support for NVIDIA GPGPUs, since 2014

– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

– MVAPICH2-Virt with virtualization support, since 2015

– MVAPICH2-EA with support for Energy-Awareness, since 2015

– MVAPICH2-Azure for Azure HPC IB instances, since 2019

– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:
– OSU MPI Micro-Benchmarks (OMB), since 2003

– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,075 organizations in 89 countries

• More than 694,000 (> 0.6 million) downloads from the 
OSU site directly

• Empowering many TOP500 clusters (Nov ‘19 ranking)
– 3rd, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 5th, 448, 448 cores (Frontera) at TACC

– 8th, 391,680 cores (ABCI) in Japan

– 14th, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and 
Linux Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 5th ranked TACC Frontera system

• Empowering Top500 systems for more than 15 years

http://mvapich.cse.ohio-state.edu/
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MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

MVAPICH2-X for 
CPU-Based Training

MVAPICH2-GDR for 
GPU-Based Training

Horovod

TensorFlow PyTorch MXNet

ML/DL Applications
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Communication Benchmark: MV2-GDR vs. NCCL2 – Allreduce (DGX-2)
• Optimized designs in upcoming MVAPICH2-GDR offer better/comparable performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)
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Communication Benchmark at Scale
• Optimized designs in upcoming MVAPICH2-GDR offer better performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) up to 1,536 GPUs
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End-to-end Performance Benchmark for TF on Summit
• ResNet-50 Training using 

TensorFlow benchmark on 
SUMMIT -- 1536 Volta 
GPUs!

• 1,281,167 images

• Time/epoch = 3.6 seconds

• Total Time (90 epochs)        
= 3.6 x 90 = 332 seconds = 
5.5 minutes!
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Platform: The Summit Supercomputer (#1 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 9.2

*We observed errors for NCCL2 beyond 96 GPUs 

MVAPICH2-GDR reaching ~0.35 million 
images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images
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• White-box profiling is needed for complex DL frameworks

• hvprof provides multiple types of valuable metrics for
– 1) ML/DL developers and 2) Designers of MPI libraries

• Profile of Latency for Allreduce (NVLink, PCIe, IB, Omni-Path)

• Summary: Non-power of 2 is under-optimized for all libraries!

3. Communication in DL vs. HPC

CNTK

Awan et al., “Communication Profiling and Characterization of Deep Learning Workloads on Clusters with High-Performance Interconnects”, IEEE Micro (Magazine) ‘20, Hot Interconnects  ’19.

Inception-v4– Intel MPI ResNet-101– MVAPICH2

Communication Middleware

Deep Learning Frameworks

Distributed Training Middleware (Horovod)

HPC Platforms

PyTorch

CPUs

GPUs InfiniBand

NCCL MPI

Proposed Profiling Infrastructure (hvprof)

MXNet TensorFlow

Omni-Path

PCIe

NVLink

High-Performance Interconnects
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• Data-Parallelism– only for models that fit the memory

• Out-of-core models
– Deeper model à Better accuracy but more memory required!

• Model parallelism can work for out-of-core models!

• Key Challenges
– Model Partitioning is difficult for application programmers

– Finding the right partition (grain) size is hard 

– cut at which layer and why?

– Developing a practical system for model-parallelism
• Redesign DL Framework or create additional layers?

• Existing Communication middleware or extensions needed?

4. Beyond Data Parallelism in DNNs

Pascal GPU

Volta GPU 

CPU Broadwell (128 GB)

CPU Skylake
(192 GB)

Only possible with Model Parallelism!
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A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, 
“HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel 
Training of TensorFlow models”, ISC ‘20 (accepted to be 
presented), https://arxiv.org/pdf/1911.05146.pdf

https://arxiv.org/pdf/1911.05146.pdf
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• HyPar-Flow is practical (easy-to-use) and high-performance (uses MPI)

– Based on Keras models and exploits TF 2.0 Eager Execution

– Leverages performance of MPI pt-to-pt. and collectives for communication

Model and Hybrid Parallelism

= Max Pooling

DNN with Identity (Residual) Mappings (Input)

HyPar-Flow
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∇
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E.g. hf.fit(model, 3, 2, hybrid)

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow: 
Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models”, 
ISC ‘20 (accepted to be presented), https://arxiv.org/pdf/1911.05146.pdf

https://arxiv.org/pdf/1911.05146.pdf
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• CPU based results

– AMD EPYC

– Intel Xeon

• Excellent speedups for 

– VGG-19

– ResNet-110

– ResNet-1000 (1k layers)

• Able to train “future” models

– E.g. ResNet-5000 (a 
synthetic 5000-layer model 
we benchmarked)

Benchmarking HyPar-Flow in Different Configurations
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• ResNet-1001 with variable batch size

• Approach: 
– 48 model-partitions for 56 cores

– 512 model-replicas for 512 nodes

– Total cores: 48 x 512 = 24,576 

• Speedup
– 253X on 256 nodes

– 481X on 512 nodes

• Scaling Efficiency
– 98% up to 256 nodes

– 93.9% for 512 nodes 

End-to-end Performance at Scale (512 nodes on Frontera)

481x speedup on 512 Intel Xeon Skylake nodes (TACC Frontera)
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• Reproducibility is a challenge for HPC and DL

• Challenges

– No standard and user-friendly way of benchmarking ML/DL models

– Disconnect between HPC and DL communities 

– Metrics cause confusion b/w communities -- images/second, time to train, latency, 
bandwidth, etc.

• MLPerf, a good start but mostly for a single-node/GPU

– Can we extend for HPC systems?

• Deep500 – a meta DL framework to evaluate DL or DL frameworks?

• Other benchmarks – framework specific (tf_cnn_benchmarks) or low-level 
(latency/bw)

Future Direction 1: Reproducibility via Open Infrastructures
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• Models beyond ResNet(s) – Generative Adversarial Networks, Transformer, 
BERT, GPT-2, Mini-go, etc.

• Applications beyond Image Classification – Neural Machine Translation, 
Language Processing,  Recommendation Systems, Reinforcement Learning, 
Neural Code Gen. etc.

Investigate scale-up/scale-out for published models on current systems like Sierra 
and Summit and upcoming systems El Capitan and Frontier

Future Direction 2: Benchmarking Emerging Models and Areas
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• Deep Learning is an important area

• Several benchmarking efforts to better understand DL workloads

– MLPerf, Deep500, DAWNBench, etc.

• DL on single-node systems is complex enough

– cuDNN, MKL, BLAS, shared-memory communication, CUDA IPC, etc.

• DL on HPC systems is even more challenging

– All of the single node + MPI, NCCL, Gloo, etc.

• Several design choices and benchmarking studies

• No single benchmark can cover all aspects! 

Conclusion
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Thank You!

Questions?

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

awan.10@osu.edu

panda@cse.ohio-state.edu

https://awan-10.github.io

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://osu.edu
https://awan-10.github.io/
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Please join us here from 1pm - 5pm 

• Tutorial on High Performance Distributed Deep Learning

• Several topics on Distributed DL Trends and Designs

• Includes a Hands-on section on Distributed TensorFlow 

• Speakers: DK Panda, Ammar Awan, and Hari Subramoni


