AIBench Scenario: Scenariodistilling AI Benchmarking

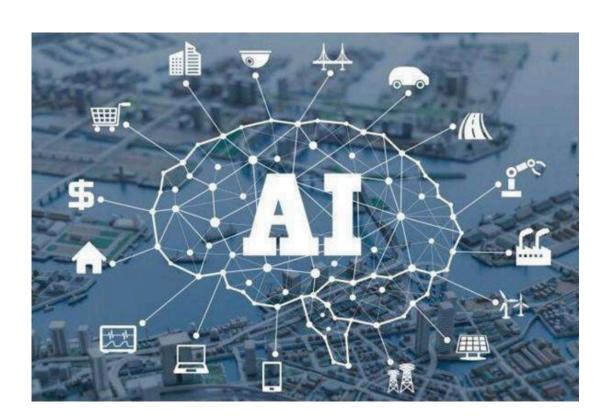
Wanling Gao

Benchmarking in the Data Center: Expanding to the Cloud (BID'21) 2021.2.28

Acknowledgement

Thanks for the invitation of Prof. Juan (Jenny) Chen

Thanks for the workshop organizaters


AI: One of the Most Important Workloads

Datacenter

Edge Computing

Supercomputing

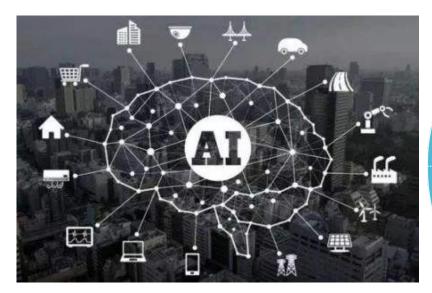
AIoT

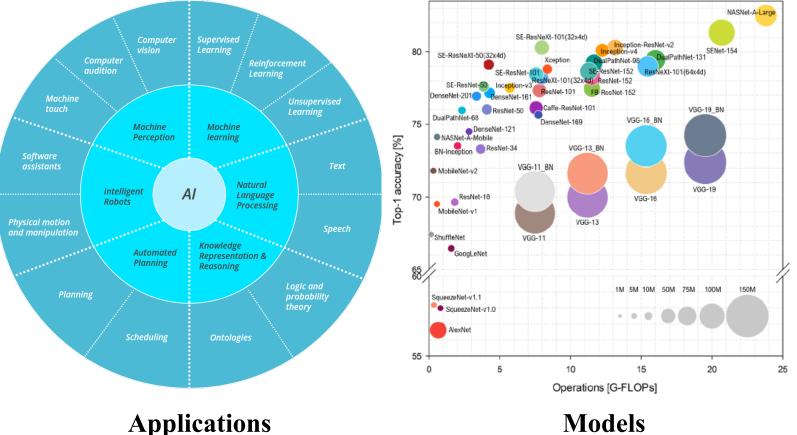
The Challenges of AI Benchmarking

■<u>FIDSS</u>

◆<u>I</u>solated

◆<u>D</u>ynamic


◆<u>S</u>ervice-based


◆<u>S</u>tochastic

Jianfeng Zhan, Lei Wang, Wanling Gao, and Rui Ren. BenchCouncil's View On Benchmarking AI and Other Emerging Workloads. Technical Report 2019. https://arxiv.org/abs/1912.00572

Fragmented: A Huge Variety of Application Scenarios and Models Scenarios

Picture from:

[1]:http://www.hatdot.com/keji/2552842.html

Domains

[2]:https://medium.com/appanion/a-five-minute-guide-to-artificial-intelligence-c4262be85fd3

[3]:Bianco, S. et al. "Benchmark Analysis of Representative Deep Neural Network Architectures." IEEE Access 6 (2018)

Bench

Landscape of AI Chips

AI Chip Landscape

This picture is modified from https://github.com/basicmi/AI-Chip. We add AI frameworks and the benchmarking results of AIBench.

Adapted from the Source: github.com/basicmi/AI-Chip

Council

Isolated: Hidden within Giant's Datacenters

- Real-world datasets and workloads or even AI models are treated as first-class confidential issues
- Isolated between academia and industry, or even among different providers.
- Poses a huge obstacle for our communities towards developing an open and mature research field.

Dynamic Complexity

Common requirements are handled collaboratively by datacenters, edge, and IoT devices.

Different distributions of data sets, workloads, ML models may substantially affect the system's behaviors.

System architectures are undergoing fast evolutions in terms of the interactions among IoT, edge, and datacenters.

Service-based Architecture: The Side Effect

SaaS model changes workloads fast

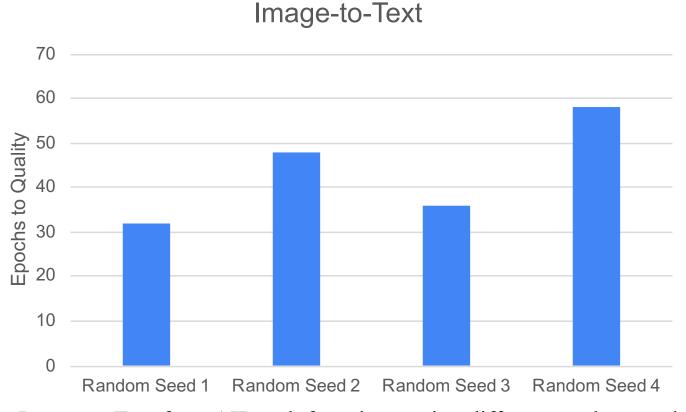
workload churn

ot scalable or even impossible to create a new benchmark or proxy for every possible workload.

Microservice-based architecture

- distributed across different datacenters
- consist of diversity of various modules with very long and complex execution paths.
- tail latency matters

Stochastic nature of AI


Random seeds affect model initialization, data traversal order, etc.

- Non-idempotence of floating-point operations
- Huge hyper-parameters

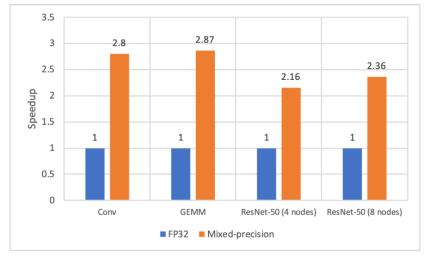
Example: Randomness

The epochs to achieve target quality vary significantly under different random seeds

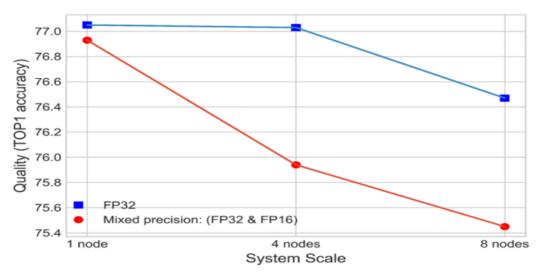
Run Image-to-Text from AIBench four times using different random seeds

[1]F. Tang et al., "AIBench Training: Balanced Industry-Standard AI Training Benchmarking"

Challenges to Traditional Benchmarking Methodology

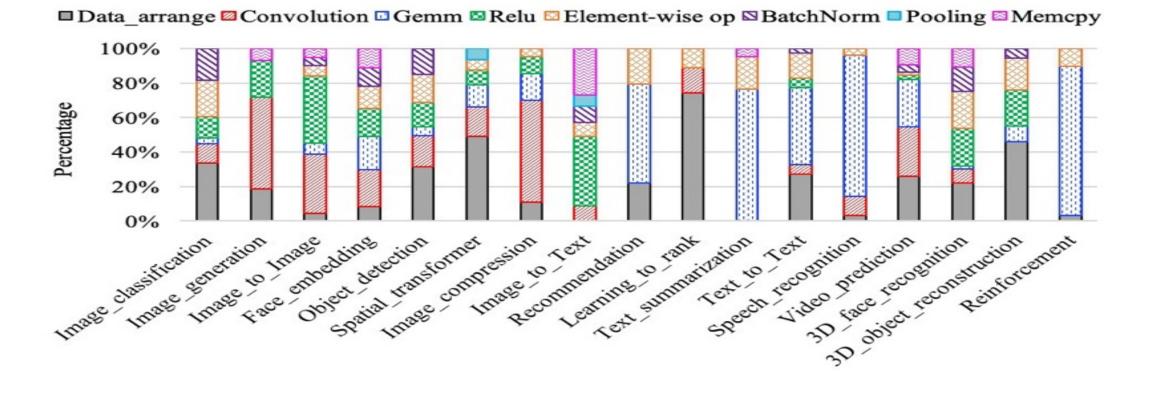


Is Micro Benchmark Sufficient ?

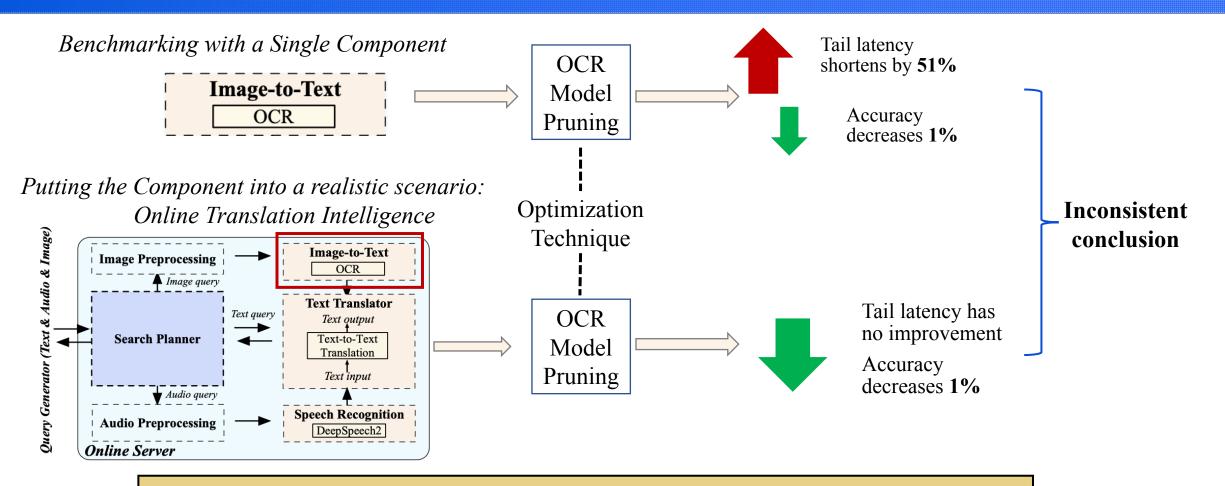

AI workloads need to consider both computational efficiency and model quality

FLOPS is no longer the only metric

Mixed-precision training significantly improve FLOPS, however, it may deteriorate the model quality



The ResNet50 quality comparison


No Single Kernel

The kernels' runtime breakdown of 17 AI workloads Some micro benchmarks may occupy a little percentage

Is Component Benchmark Sufficient?

Only a single component may need to error-prone conclusions

Single Component vs. Realistic Application

E-commerce Search Intelligence

The overall system tail latency deteriorates even 100X comparing to a single component tail latency

◆2.2X comparing to recommendation component

◆180X comparing to text classification component

Benchmarking a single component cannot reflect the overall system's effects

Model Accuracy vs. QoS

For *E-commerce Search Intelligence*

- Model accuracy improvement 1.5% => overall system 99th percentile latency deteriorates by 9.7X
 - Replace ResNet50 with ResNet152 for image classification
 - Overall system 99th percentile latency
 - 1136.79 millisecond => 10985.49 millisecond

Benchmarking a single component cannot reflect the tradeoff between model accuracy and QoS

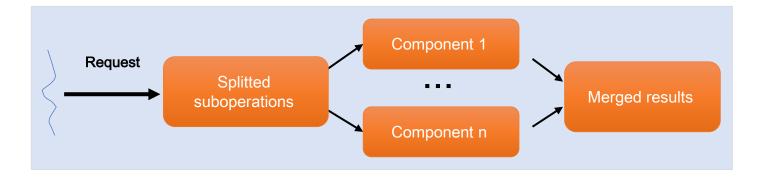
Statistical Model + Component Benchmarks ?

Whether a statistical model can predict the overall system tail latency, through profiling many components' tail latency performance ?
 NO !

Simple queueing model

E-commerce Search Intelligence Scenario

8.6X between the actual average latency and the theoretical one


- **3.3X** between the actual 99th percentile latency and the theoretical one
- Sophisticated queueing network model
 - E-commerce Search Intelligence Scenario
 - 4.9X between the actual average latency and the theoretical one
 Difficult for tail latency predicting: non-superposition property

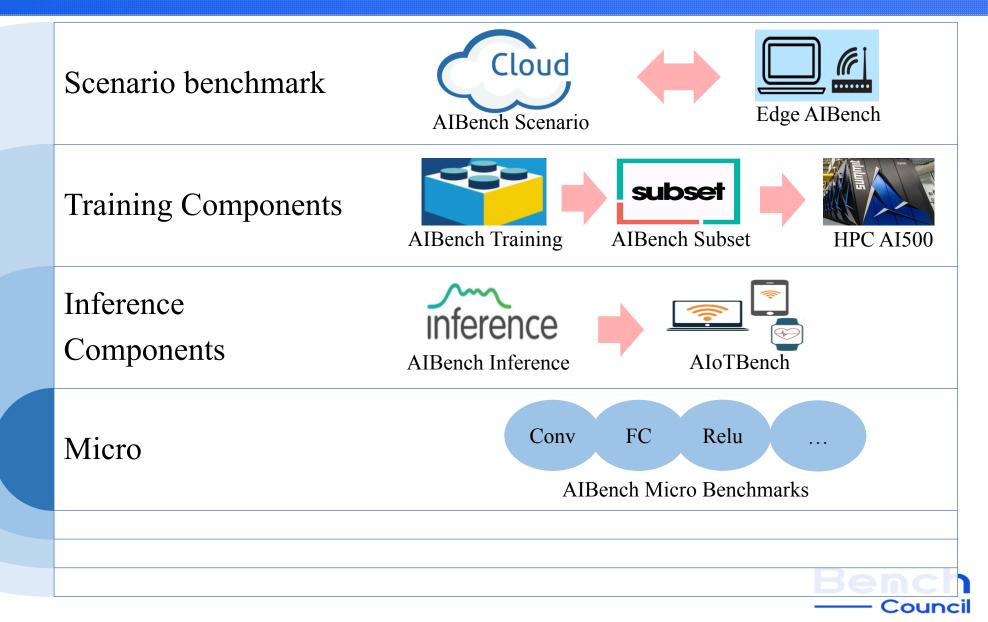
Scenario Benchmark is needed !

A proxy of a realistic application scenario
 The real one is treated as first-class confidential issues

Capturing the critical path and primary modules
 The permutations of a series of AI and non-AI components

Our Methodology

Scenario benchmarksOverall system performance


Consider Conflicting Benchmarking Requirements

Benchmarking at different stages

- Earlier-stage evaluations of a new architecture or system :
 - Portability (Micro benchmarks)
 - Simplicity
- Later-stage evaluations or purchasing off-the-shelf systems :
 - Comprehensiveness/Representativeness
 - Reality and system performance (Component or scenario benchmarks)

AIBench Summary

ChallengesRelated Work

■ AIBench

AIBench Scenario

Edge AIBench

- AIBench Training
 - □ HPC AI500
- AIBench Inference

□ AIoTBench

Conclusion

AI Benchmarks for Datacenters

Fathom arXiv 2016 IISWC 2016 Eight workloads Training and inference No quality metric		DeepBench, Baidu Github 2017 AI basic operators, containing gemm, convolution, recurrent layer and all reduce Only has micro benchmarks		DAWNBench, NIPS 2017 Image classification and question answer Use time-to-accuracy as metric		ar Fi	AIBench, Bench 2018 arXiv 2019, 2020 First proposing scenario benchmarks 17 tasks, 17 workloads, 3 subsets		
	DNNMark GitHub 2016 GPGPU 2017 Eight micro benc	7	BenchIP arXiv 2017 JCST 2018 10 microbenchmarks 11 neural network models	5	TBD Suite GitHub 2018 IISWC 2018 Eight workloads, six domains		MLPerf, 2018 GitHub 2019 SysML 2020 Five domains seven workloads	AIIA-DNN GitHub 2019 Designed to support training and inference, but only provides inference implements now	

Bench

AI Benchmarks for HPC Systems

C C	on and question answer; nark that uses time-to-	benchmarking	covering 4 level	 MLPerf, arXiv 2019, SysML 2020 7 workloads covering 5 domains; 2 benchmarking levels and rules; Use time-to-train as the metric. 		
	 HPC AI500, Bench 2018, a Bench'18: Cover 3 representative app scientific deep learning. arXiv 2020: Hierarchical benchmarking 3 benchmarking levels and Use Valid FLOPS as the m Two representative and rep workloads (Business + Scientific) 	lication of g methodology; rules; etric; eatable AI	HPL-AI, 2019 Micro benchmark base LU decomposition; Scalable but can not re model quality.		AIPerf, 2020 Based on AutoML; Scalable but hard to ensure repeatability.	

AI Benchmarks for Edge Computing

Edge AIBench, Bench 2018, arXiv 2019

Scenario benchmarking

ICU patient monitoring, camera monitoring, smart home, and automatic driving Integrated federal learning

EEMBC MLMark , 2019

Image classification, object detection, translation, and speech recognition Closed source

EdgeBench, UCC Companion 2018

Speech recognition, and image classification

AI Benchmarks for IoT

AIOT, Bench 2018

Vision, audio, and NLP domain Supports Android and Raspberry Pie TensorFlow Lite, Caffe 2 End-to-end, microbenchmarks

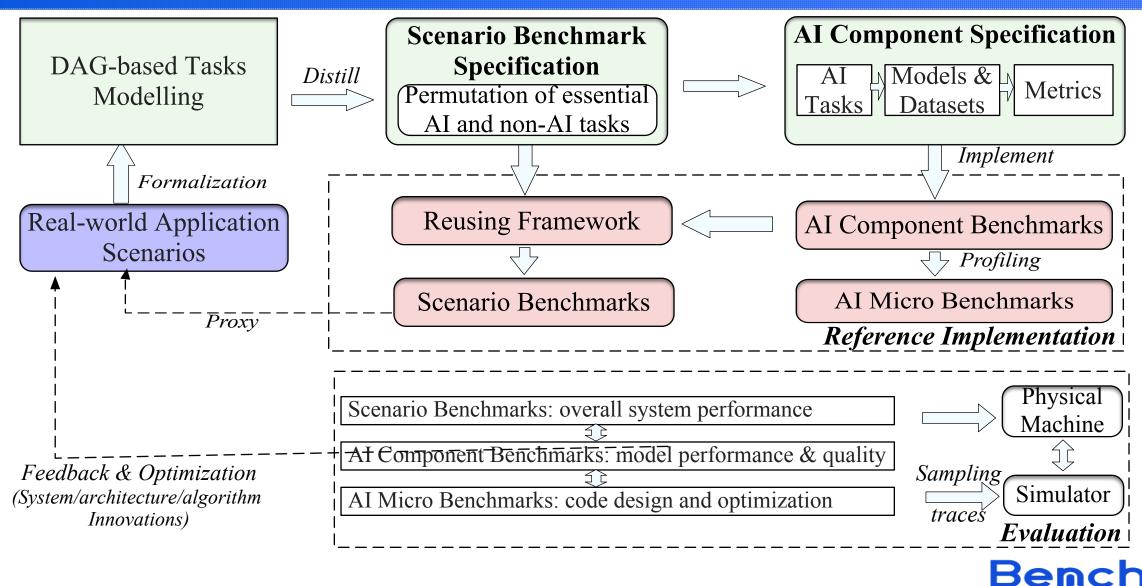
ETH Zurich AI Benchmark , ECCV 2018

Only supports vision domain Only supports Android and TensorFlow Lite End-to-end

ChallengesRelated Work

AIBench

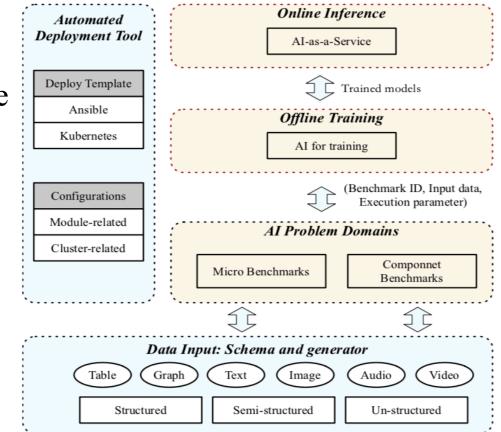
- **AIBench Scenario**
- Edge AIBench
 AIBench Training
 HPC AI500
- AIBench Inference
 - AIoTBench
- Conclusion


BenchCouncil

International Open Benchmark Council (BenchCouncil)

- http://www.benchcouncil.org
- a non-profit international organization
 - Aiming to promote the standardization, benchmarking, evaluation, incubation, and promotion of HPC, Chip, AI, Big Data, Block Chain, and other emerging techniques.

Scenario-distilling Benchmarking Methodology



- Council

29

Reusing Framework

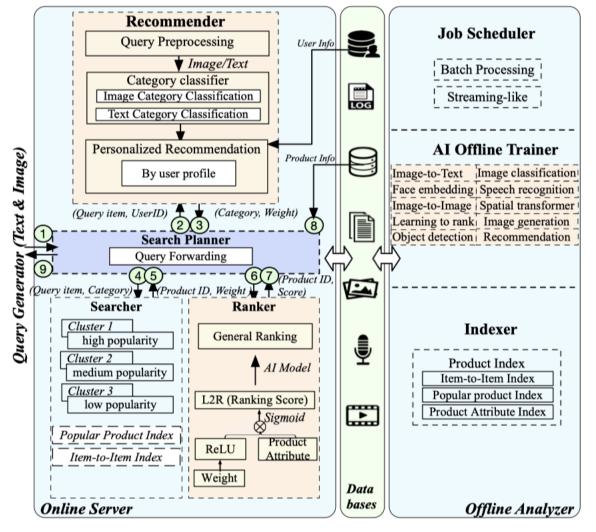
- The First Reusing Framework for easily constructing scenario benchmarks
 - A highly extensible, configurable, and flexible benchmark framework
 - ◆AI-related and non AI-related Library
 - Support critical paths and primary modules modelling
 - Multiple loosely coupled modulesIndividually
 - Micro/Component benchmarks
 - Collectively
 - Scenario benchmarks

Scenario Benchmark: E-commerce Search Intelligence

Query generator

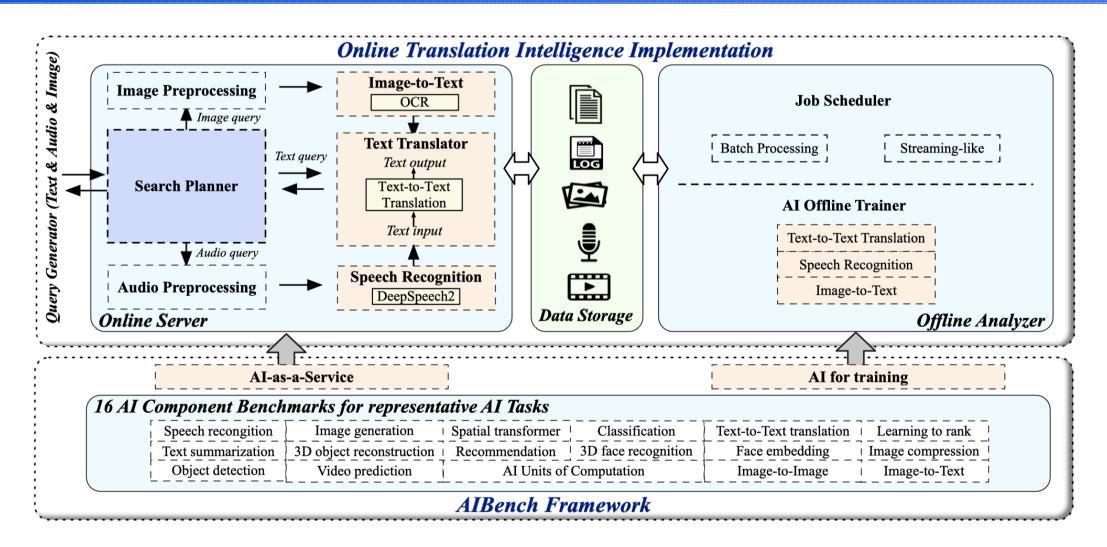
 simulate concurrent users and send query requests

Online module


personalized searching and recommendations

Offline module

a training stage to generate a learning model

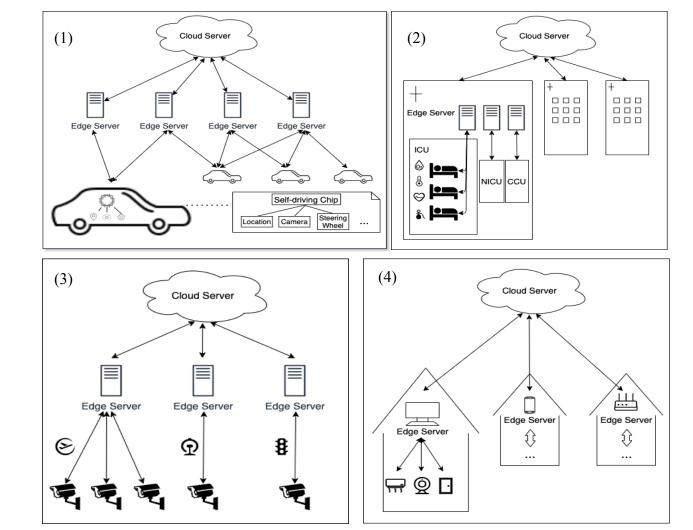

Data storage module

 data storage, e.g., user database, product database

Scenario Benchmark: Online Translation Intelligence

ChallengesRelated Work

AIBench


- AIBench ScenarioEdge AIBench
- AIBench Training
 - **HPC AI500**
- AIBench Inference
 - AIoTBench
- Conclusion

Four Typical Edge AI Scenarios

(1) Autonomous Vehicle

- Latency-sensitive
- High-accuracy
- Mobile
- (2) ICU Patient Monitor
 - Latency-sensitive
 - Parallel
- (3) Surveillance Camera
 - Enormous Data
- ■(4) Smart Home
 - Heterogenous devices and data

Nine Typical Edge AI Tasks

Task Name	Edge AI Scenarios	Models	Datasets	Implementations
Lane Detection	Autonomous Vehicle	LaneNet	Tusimple/ CULane	Pytorch/Caffe
Traffic Sign Detection	Autonomous Vehicle	Capsule Network	German Traffic Sign Recognition Benchmark	Keras
Heart Failure Prediction	ICU Patient Monitor	LSTM	MIMIC-III	Tensorflow/Keras
Decompensation Prediction	ICU Patient Monitor	LSTM	MIMIC-III	Tensorflow/Keras
Death Prediction	ICU Patient Monitor	LSTM	MIMIC-III	Tensorflow/Keras
Person Re-identification	Surveillance Camera	DG-Net	Market-1501	Pytorch
Action Detection	Surveillance Camera	ResNet18	UCF101	Pytorch/Caffe
Face Recognition	Smart Home	Facenet/Sphere network	LFW/CASIA-Webface	Tensorflow/Caffe
Speech Recognition	Smart Home	DeepSpeech2	LibriSpeech	Tensorflow

Overview

- Challenges
- Related Work

■ AIBench

- AIBench Scenario
 - Edge AIBench
- **AIBench Training**
 - **HPC AI500**
- AIBench Inference
 - AIoTBench
- Conclusion

Typical Internet service applications (with 17 industry partners)

Internet Service	Core Scenario	Involved AI Tasks		
	Contant based image retrieval (a.g. face seens)	Object detection; Classification; Spatial transformer; Face embedding;		
	Content-based image retrieval (e.g., face, scene)	3D face recognition		
	Advertising and recommendation	Recommendation		
	Maps search and translation	3D object reconstruction; Text-to-Text translation; Speech recognition;		
Search Engine	•	Neural architecture search		
	Data annotation and caption (e.g., text, image)	Text summarization; Image-to-Text		
	Search result ranking	Learning-to-rank		
	Image resolution enhancement	Image generation; Image-to-Image		
	Data storage space and transfer optimization	Image compression; Video prediction		
	Friend or community recommendation	Recommendation; Face embedding; 3D face recognition;		
	Vertical search (e.g., image, people)	Classification; Spatial transformer; Object detection;		
	Language translation	Text-to-Text translation; Neural architecture search		
	Automated data annotation and caption	Text summarization; Image-to-Text; Speech recognition		
Social Network	Anomaly detection (e.g., spam image detection)	Classification		
	Image resolution enhancement	Image generation; Image-to-Image		
	Photogrammetry (3D scanning)	3D object reconstruction		
	Data storage space and transfer optimization	Image compression; Video prediction		
	News feed ranking	Learning-to-rank		
	Product searching	Classification; Spatial transformer; Object detection		
	Product recommendation and advertising	Recommendation		
	Language and dialogue translation	Text-to-Text translation; Speech recognition; Neural architecture search		
	Automated data annotation and caption	Text summarization; Image-to-Text		
E-commerce	Virtual reality (e.g., virtual fitting)	3D object reconstruction; Image generation; Image-to-Image		
	Data storage space and transfer optimization	Image compression; Video prediction		
	Product ranking	Learning to rank		
	Facial authentication and payment	Face embedding; 3D face recognition;		

AIBench Training Workloads

Coverage of diverse network architectures (CNN、ResNet、LSTM、 GRU、Attention, etc.)

Text processing (5)

□ Text-to-Text, Text summarization, Learning to Rank, Recommendation, Neural Architecture Search

Image processing (8)

Image Classification, Image Generation, Image-to-Text, Image-to-Image, Face Embedding, Object Detection, Image Compression, Spatial Transformer

Audio processing (1)

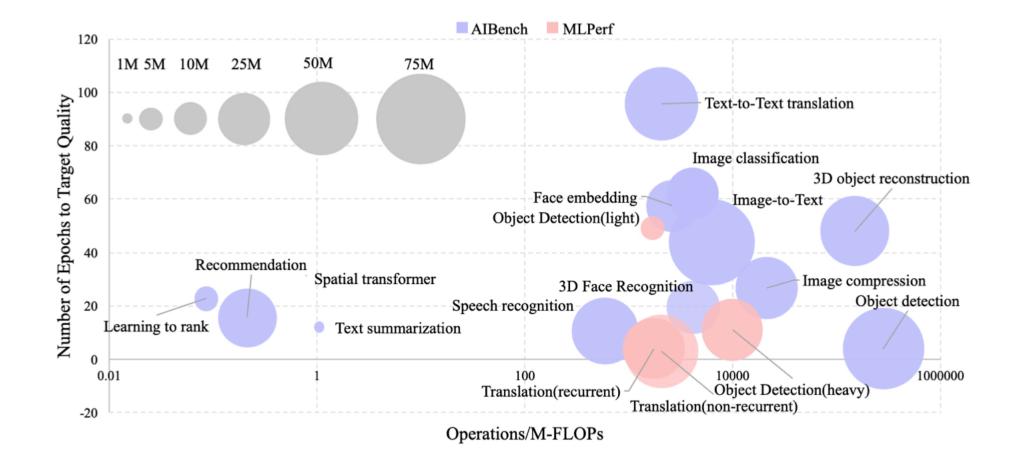
Speech Recognition

Video processing (1)

Video Prediction

◆3D data processing (2)

□ 3D Face Recognition, 3D Object Reconstruction

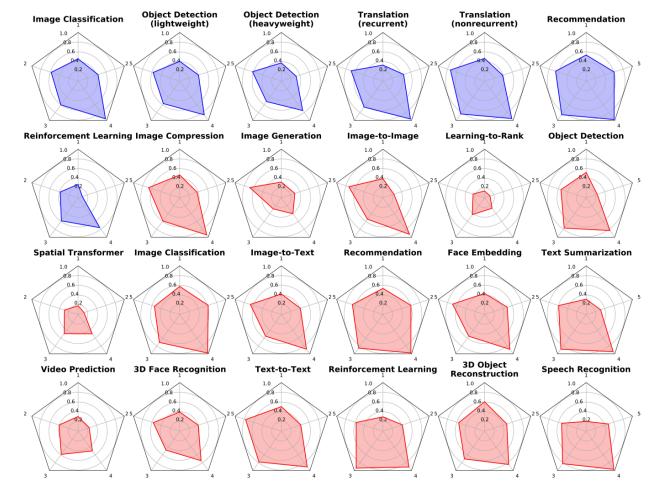


AIBench Training vs. MLPerf Training

Concurrent work

- AIBench Training has wider coverage
 - Tasks
 - Model complexity
 - Diverse Characteristics
 - Microarchitecture
 - FLOPs computation、memory access pattern、computation pattern I/O pattern
 - **System**
 - Evaluation time cost, variation, and convergence of hot functions
 - Algorithms
 - Model architectures and parameters

г					
	Methodology		AIBench Training v1.0	MLPerf Training V0.5	
			Balanced methodology considering conflicting requirements	According to com- mercial and research relevance	
	Algorithm		Seventeen tasks and models	Five tasks and seven models	
	Dataset		Text, image, 3D, au- dio, and video data	Text and image data	
'n、	Model behavior	Computation	0.09 to 282830 MFLOPs	0.21 to 24500 MFLOPs	
		Complexity	0.03 to 68.4 million parameters	5.2 to 49.53 million parameters	
		Convergence	6 to 96 epochs	3 to 49 epochs	
	System behavior		30 hot functions	9 hot functions	
	Micro- architecture behavior	Achieved occupancy	0.14 to 0.61	0.28 to 0.54	
		IPC efficiency	0.25 to 0.77	0.39 to 0.74	
		Gld efficiency	0.28 to 0.94	0.52 to 0.85	
		Gst efficiency	0.27 to 0.98	0.75 to 0.98	
		DRAM utilization	0.12 to 0.61	0.52 to 0.61	
_					



Micro-architectural Characteristics

Distinct computation and memory access behaviors

◆ AIBench has a wider coverage than MLPerf

1: achieved occupancy Warps utilization rate

2: ipc efficiency IPC efficiency

3: gld efficiency Global memory load efficiency

4: gst efficiency Global memory store efficiency

5: dram utilization DRAM utilization

Overview

ChallengesRelated Work

■ AIBench

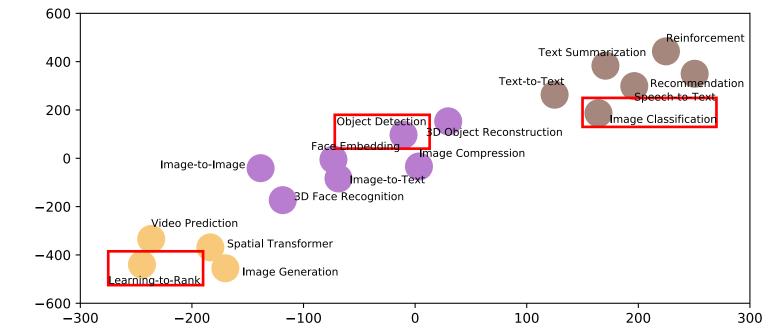
- AIBench Scenario
 Edge AIBench
 AIBench Training
 HPC AI500
 AIBench Inference
 - □ AIoTBench
- Conclusion

HPC AI500 Benchmarking Methodology

The criteria for choosing the workloads

Repeatability

- Representativeness and Affordability
- Scalability


Repeatability: Randomness of Workloads

No.	Component Benchmark	Time Per Epoch (second)	Total Time (hour)	Variation	Repeat Times
TrC1	Image Classification	4440	76.25	1.12%	5
TrC2	Image Generation	3935.75	N/A	N/A	N/A
TrC3	Text-to-Text translation	64.83	1.72	9.38%	6
TrC4	Image-to-Text	845.02	10.21	23.53%	5
TrC5	Image-to-Image	251.67	N/A	N/A	N/A
TrC6	Speech Recognition	14326.86	42.78	12.08%	4
TrC7	Face Embedding	214.73	3.43	5.73%	8
TrC8	3D Face Recognition	36.99	12.02	38.46%	4
TrC9	Object Detection	1859.96	2.06	0	10
TrC10	Recommendation	36.72	0.16	9.95%	5
TrC11	Video Prediction	24.99	2.11	11.83%	4
TrC12	Image Compression	763.44	5.67	22.49%	4
TrC13	3D Object Reconstruction	28.41	0.38	16.07%	4
TrC14	Text Summarization	1923.33	6.41	24.72%	5
TrC15	Spatial Transformer	6.38	0.06	7.29%	4
TrC16	Learning-to-Rank	60.1	0.14	1.90%	4
TrC17	Neural Architecture Search	932.79	7.47	6.15%	6

Representativeness and Affordability

Using K-Means to cluster all seventeen benchmarks based on system behavior metrics (system occupancy, IPC, load, store, dram utilization)

The selected workloads have low randomness and good repeatability
 Image Classification, Object Detection, and Learning to Rank

Scalability

AIBench subset computation comparison (Single training batch).

Workloads	Computation (FLOPs)	
Image Classification	23 G	
Object Detection	691 G	
Learning to Rank	0.08 M	

Image Classification and **Object Detection** meet the scalability requirement and are chosen as two typical workloads for HPC AI benchmarking.

Tasks, Dataset, and Model of HPC AI500

Tasks

Extreme Weather Analysis: detect the patterns of extreme weather, essentially Object Detction. The application that wins Gordon Bell Prize.

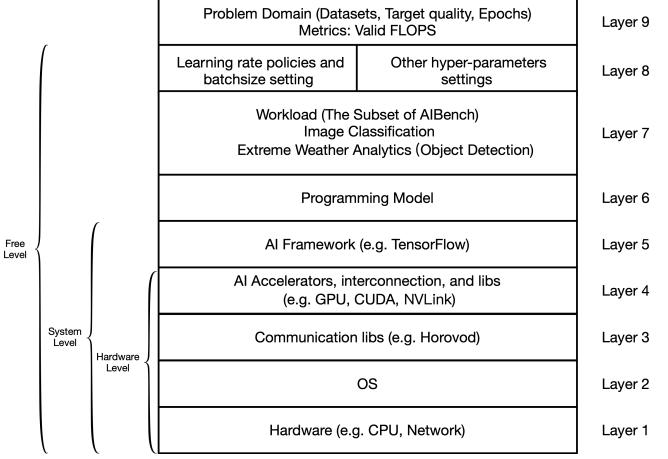
Image Classification : ResNet50/ImageNet is a de facto benchmark for optimizing HPC AI systems.

Dataset

◆ The extreme weather dataset: 16 channels, 768*1052, 2 TB

ImageNet 2012: 3 channels, 256*256, 136 GB

Model


Faster-RCNN

ResNet-50 V1.5

HPC AI500 Hierarchical Benchmarking Rules

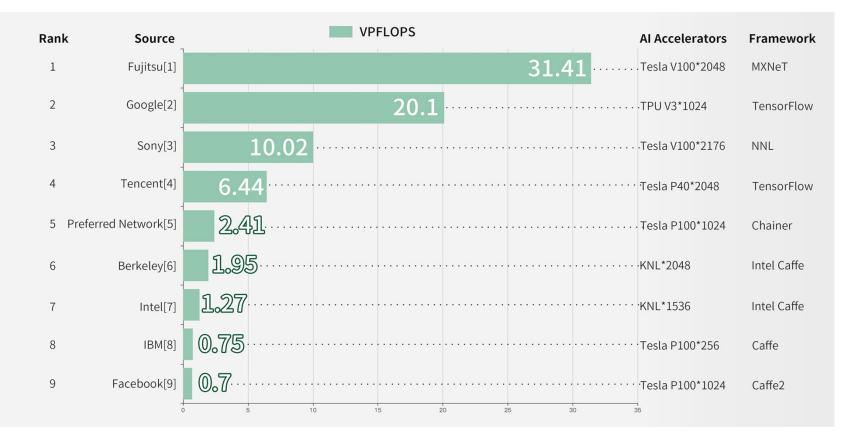
HPC AI500 defines a comprehensive benchmarking methodology based on ninelayers system abstraction, divided into the following three level: hardware level, system level, and free level.

Metric

Using VFLOPS to unify the computation and model quality.

$$VFLOPS = FLOPS \times \left(\frac{achieved_quality}{target_quality}\right)^n$$

achieved_quality refers to the achieved quality in the evaluation.


target_quality refers to the target quality defined in HPC AI500 problem domain.

The value of n is a positive integer, which is used to define the sensitivity to the model quality. The higher the number of n, the more loss of quality drop. As EWA (Object Detection) has much more stringent quality requirement than that of Image Classification. We set n as 10 for EWA and 5 for Image Classification by default.

HPC System Ranking

HPC AI500 Image Classification, Free Level

For more details about benchmarking rules, metrics, and performance data: https://www.benchcouncil.org/ranking.html

Overview

ChallengesRelated Work

■ AIBench

AIBench Scenario
Edge AIBench
AIBench Training
HPC AI500
AIBench Inference
AIoTBench

Conclusion

AIBench Inference

17 Inference Workloads (CNN、ResNet、LSTM、GRU、Attention, etc.)

Text processing (5)

□ Text-to-Text, Text summarization, Learning to Rank, Recommendation, Neural Architecture Search

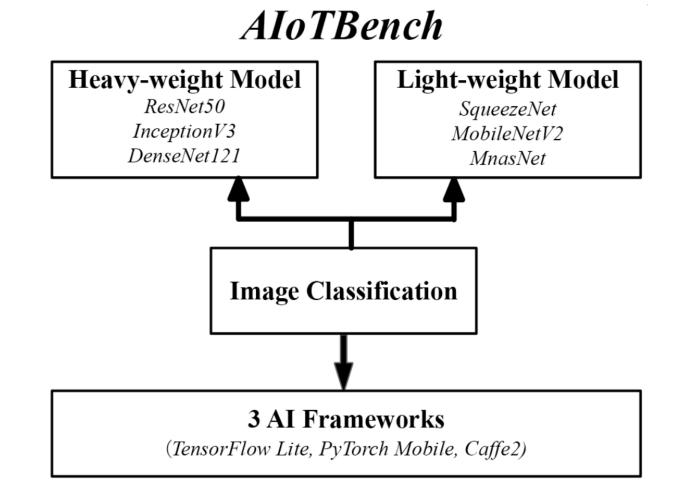
Image processing (8)

Image Classification, Image Generation, Image-to-Text, Image-to-Image, Face Embedding, Object Detection, Image Compression, Spatial Transformer

Audio processing (1)

Speech Recognition

Video processing (1)


Video Prediction

•3D data processing (2)

□ 3D Face Recognition, 3D Object Reconstruction

AIoTBench Overview

Conclusion

- Scenario AI benchmarking is needed !
- BenchCouncil AIBench (<u>https://www.benchcouncil.org/aibench.html</u>)
 - ◆ Scenario, Training, Inference, and Micro Benchmarks across Datacenter, HPC, IoT, Edge
 - Scenario-distilling benchmarking methodology
 - considering different benchmarking requirements
 - Scenario benchmarks
 - The first AI benchmark that provides real-world scenario modelling
 - E.g., the complete use cases of autonomous driving scenario in edge computing
 - For overall system evaluation
 - Component benchmarks
 - Comprehensive workload behaviors
 - Algorithm/System/Micro-architectural Characteristics
 - Providing component subset for ranking
 - Fairness, affordability, representativeness
 - Micro benchmarks
 - Hotspot functions and code optimizations

Conclusion (Cont')

■ If you feel interested in BenchCouncil or AIBench, you are very welcome to join us

References

- AIBench (<u>https://www.benchcouncil.org/aibench.html</u>)
 - Scenario-distilling AI Benchmarking
 - □ <u>https://arxiv.org/abs/2005.03459</u>
 - ◆ AIBench Training: Balanced Industry-Standard AI Training Benchmarking
 - Accepted by ISPASS 2021
- HPC AI500 (<u>https://www.benchcouncil.org/HPCAI500/index.html</u>)
 - HPC AI500: The Methodology, Tools, Roofline Performance Models, and Metrics for Benchmarking HPC AI Systems
 - https://www.benchcouncil.org/file/HPC_AI500TR.pdf
- Edge AIBench (<u>https://www.benchcouncil.org/EdgeAIBench/index.html</u>)
 - Edge AIBench: towards comprehensive end-to-end edge computing benchmarking.
 <u>https://arxiv.org/pdf/1908.01924.pdf</u>
- AIoTBench (<u>http://www.benchcouncil.org/AIoTBench/index.html</u>)
 - AIoTBench: Towards Comprehensive Benchmarking Mobile and Embedded device Intelligence
 <u>https://www.benchcouncil.org/AIoTBench/files/AIoTBench-Bench18.pdf</u>

Download

AIBench for datacenter AI benchmarking

AIBench Micro Benchmark

<u>http://www.benchcouncil.org/benchhub/AIBench/DC_AIBench_Micro/</u>

AIBench Component Benchmark

<u>http://www.benchcouncil.org/benchhub/AIBench/DC_AIBench_Component/</u>

AIBench Scenario Benchmark

<u>http://www.benchcouncil.org/benchhub/AIBench/AIBench_Application_Benchmark/</u>

<u>http://www.benchcouncil.org/benchhub/AIBench/AIBench_DCMIX</u>

AIBench Framework

<u>http://www.benchcouncil.org/benchhub/AIBench/AIBench_Framework/</u>

Download (Cont')

HPC AI500 for benchmarking HPC AI systems
http://www.benchcouncil.org/benchhub/hpc-ai500-benchmark

Edge AIBench for edge computing http://www.benchcouncil.org/benchhub/edge-aibench/

■AIoTBench for IoT

<u>http://www.benchcouncil.org/benchhub/aiotbench/</u>

Sign in/up BenchHub to get access !

Thank You !

