
A Comprehensive Study of In-
Memory Computing

on Large HPC Systems

Dan Huang, Zhenlu Qin, Qing Liu, Norbert Podhorszki, Scott Klasky
Sun Yat-sen University

New Jersey Institute of Technology
Oak Ridge National Lab

1

Why need in-memory computing in HPC

+ Compute is evolving from peta-scale to exa-scale era.
+ In particular compute is powered by customized GPUs.
- Persistent storage I/O has been a performance bottleneck on data-
intensive HPC simulations and analytics for last decades.
- SSD based burst buffer can alleviate I/O bottleneck, can not solve it.
• Drive HPC communities to look for more efficient solutions.
• In-memory computing aims to address this challenge at memory layer.

2

Two models of HPC in-memory computing

• In-transit: Simulation data is staged at dedicated staging area.
+ Simulation can run asynchronously.
- Extra data movement and data staging area.
E.g. DataSpaces, DIMES, Flexpath and Decaf.

• In-situ: Analytics can directly access the simulation memory.
+ Limited or no data copy.
- Simulation is slowed down due to time-sharing.
E.g. SENSEI for HPC visualization.

• Lack of complete evaluations and understanding of in-memory
computing on large HPC systems.

3

Contributions

• One of the most comprehensive studies on HPC in-memory
computing.
• The end-to-end performance of scientific workflow.
• Software usability, portability and robustness.
• In-depth qualitative and quantitative analyses of the behavior of in-memory

computing.
• Summarize a number of key findings shedding a light on the weaknesses and

possible areas for future research.
• Show the insights of how to tune the performance of in-memory libraries on

the two distinct HPC systems

4

Background

• HPC in-memory computing frameworks:

Metadata and
data staging

Metadata

Data
staging

Data
Staging

Data
staging

Data

Data adaptor

Simulation

Analytics

Data adaptor

Simulation

Analytics

Simulation

Analytics

Simulation

Analytics

Simulation

Analytics

Events for
sub/pub
metadata

Metadata and
data staging

Metadata

Data
staging

Data
Staging

Data
staging

Data

Data adaptor

Simulation

Analytics

Data adaptor

Simulation

Analytics

Simulation

Analytics

Simulation

Analytics

Simulation

Analytics

Events for
sub/pub
metadata

Metadata and
data staging

Metadata

Data
staging

Data
Staging

Data
staging

Data

Data adaptor

Simulation

Analytics

Data adaptor

Simulation

Analytics

Simulation

Analytics

Simulation

Analytics

Simulation

Analytics

Events for
sub/pub
metadata

Metadata and
data staging

Metadata

Data
staging

Data
Staging

Data
staging

Data

Data adaptor

Simulation

Analytics

Data adaptor

Simulation

Analytics

Simulation

Analytics

Simulation

Analytics

Simulation

Analytics

Events for
sub/pub
metadata

DataSpaces, Rutgers University DIMES, Rutgers University Flexpath, GaTech/ORNL Decaf, ANL

5

Comparison of usability

• Usability matters for its broad
adoption due to need to be in the
hands of domain scientists.

• The engineering efforts using existing
frameworks can be substantial:
• Depict global data via

configuration file (XML).
• Almost access servers via either

the communication APIs or third-
party IO interfaces e.g. ADIOS.

• Decaf adopts python or C++ to
wrap components into one MPI
communicator.

• Configurations for build options.

Lines of code for configuration and API invocation.
Category LOC Functionality

DataSpace and DIMES (ADIOS)

Build options 13 Enable RDMA, socket and etc.

Runtime config. 8 Define staging area: dimensions, size, offset and etc.

ADIOS XML config. 18 Data description in ADIOS: dimensions, size, offset and etc.

ADIOS data staging API 30 Server and client init, put/get data, and finalize

DataSpace and DIMES (native)

Build options 13 Enable RDMA, socket and etc.

Runtime config. 8 Define staging area: dimensions, size, offset and etc.

Data staging API 81 Server and client init, lock/unlock, put/get data, and finalize

Flexpath

Build options 5 RDMA API options, compiler and flags.

ADIOS XML config. 18 Data description in ADIOS: dimensions, size, offset and etc.

Data staging API 30 Init, put/get data and finalize

Decaf

Build options 8 Enable transport layers, e.g. MPI

Bootstrap script 21 Define and link producer, consumer and staging processes

Data staging API 32 Init, dynamical load libs, data transformation, staging and finalize

6

Comparison of usability

• Usability matters for its broad
adoption due to need to be in the
hands of domain scientists.

• The engineering efforts using existing
frameworks can be substantial:
• Depict global data via

configuration file (XML).
• Almost access servers via either

the communication APIs or third-
party IO interfaces e.g. ADIOS.

• Decaf adopts python or C++ to
wrap components into one MPI
communicator.

• Configurations for build options.

7

Finding 1.In terms of usability, in-memory libraries are still far
from being plug-and-play for domain scientists, and most of
them require substantial support from HPC administrators or
library developers, e.g. choosing the optimal build options and
runtime I/O configurations

Testbed configurations

Build and runtime configurations.

Method Version Build options Runtime configurations

DataSpaces/ADIOS

and

DIMES/ADIOS

DataSpaces 1.7.2,

ADIOS 1.13

–with-dataspaces, –with-dimes, –with-mxml,

–with-flexpath, –enable-dimes, –with-dimes-

rdma-buffer-size=1024, –enable-drc

lock type=2, hash version=2,

max versions=1

DataSpaces/native

and DIMES/native

DataSpaces 1.7.2,

ADIOS 1.13

–enable-dimes, –enable-drc,

–with-dimes-rdma-buffer-size=2048

lock type=2, hash version=2,

max versions=1

MPI-IO/ADIOS ADIOS 1.13 –with-mxml lfs setstripe –stripe-size 1m –stripe-count -

1,

ADIOS XML: stats=off

Flexpath/ADIOS ADIOS 1.13, EVPath

for ADIOS 1.13

–with-flexpath CMTransport=nnti, ADIOS XML:

queue size=1

Decaf version as of 06/20/2018 transport mpi=on,

build bredala=on, build manala=on

prod dflow redist=‘count’,

dflow con redist=‘count’

Workflow description. Note that nprocs is the number of MPI processors used in the simulation.

Workflow name Simulation Analytics Output data

LAMMPS LAMMPS (version as of 08/22/2018),

a molecular dynamics simulator

mean squared displacement (MSD) 5⇥nprocs⇥512000 double-precision

data

Laplace Solving Laplace’s equation in a rectan-

gle region

moment turbulence data analysis

(MTA)

4096 ⇥ nprocs ⇥ 4096 double-

precision data

Synthetic A parallel benchmark that outputs data

to the staging servers

A reader that retrieves data from the

staging servers

Configurable

8

Workflow configurations

Build and runtime configurations.

Method Version Build options Runtime configurations

DataSpaces/ADIOS

and

DIMES/ADIOS

DataSpaces 1.7.2,

ADIOS 1.13

–with-dataspaces, –with-dimes, –with-mxml,

–with-flexpath, –enable-dimes, –with-dimes-

rdma-buffer-size=1024, –enable-drc

lock type=2, hash version=2,

max versions=1

DataSpaces/native

and DIMES/native

DataSpaces 1.7.2,

ADIOS 1.13

–enable-dimes, –enable-drc,

–with-dimes-rdma-buffer-size=2048

lock type=2, hash version=2,

max versions=1

MPI-IO/ADIOS ADIOS 1.13 –with-mxml lfs setstripe –stripe-size 1m –stripe-count -

1,

ADIOS XML: stats=off

Flexpath/ADIOS ADIOS 1.13, EVPath

for ADIOS 1.13

–with-flexpath CMTransport=nnti, ADIOS XML:

queue size=1

Decaf version as of 06/20/2018 transport mpi=on,

build bredala=on, build manala=on

prod dflow redist=‘count’,

dflow con redist=‘count’

SENSEI version as of 02/07/2019 ENABLE SENSEI=on Tightly couple simulation and analytics on

one CPU core.

Workflow description. Note that nprocs is the number of MPI processors used in the simulation.

Workflow name Simulation Analytics Output data

LAMMPS LAMMPS (version as of 08/22/2018),

a molecular dynamics simulator

mean squared displacement (MSD) 5⇥nprocs⇥512000 double-precision

data

Laplace Solving Laplace’s equation in a rectan-

gle region

moment turbulence data analysis

(MTA)

4096 ⇥ nprocs ⇥ 4096 double-

precision data

Synthetic A parallel benchmark that outputs data

to the staging servers

A reader that retrieves data from the

staging servers

Configurable

9

Weak scaling
results

Titan, ORNL Cori, NERSC

Observations:
1. Overall, in-memory libraries

show better performance
than MPI-IO, except
DataSpaces on Titan.

2. Fixed number of Lustre OSTs
and MDS limits the scalability
of MPI-IO.

3. The scalability of DataSpaces
is worse than others due to
the mismatch of global data
decomposition and layout.

4. DataSpaces and DIMES fail to
serve workflows with scale of
(8192, 4096).

10

Global data decomposition

Staging servers

S-1 S-2 S-3 S-4

A-1 A-2

S-1
S-2
S-3
S-4

A-1

A-2

Staging serversStaging servers

S-1 S-2 S-3 S-4

A-1 A-2

S-1
S-2
S-3
S-4

A-1

A-2

Staging servers

Observations and analyses:
1. Global data partition and layout on staging servers

significantly impact the performance of data movement.
2. Avoid decomposed vector fragments to multiple staging

nodes.
3. Design a parallel N-to-N accessing at in-memory

computing framework.

1 2 3 4

11

Global data decomposition

Staging servers

S-1 S-2 S-3 S-4

A-1 A-2

S-1
S-2
S-3
S-4

A-1

A-2

Staging serversStaging servers

S-1 S-2 S-3 S-4

A-1 A-2

S-1
S-2
S-3
S-4

A-1

A-2

Staging servers

Observations and analyses:
1. Global data partition and layout on staging servers

significantly impact the performance of data movement.
2. Avoid decomposed vector fragments to multiple staging

nodes.
3. Design a parallel N-to-N accessing at in-memory

computing framework.

1 2 3 4

12

Finding 2. The mismatch between staging data layout
and the decomposition strategy can result in the
unexpected N-to-1 access to data staging area. This can
introduce a significant performance penalty at scale
(5.3X performance degradation in our experiments).

Memory usage and breakdown

 0

 1000

 2000

 3000

 0 100 200 300 400 500M
em

or
y

us
ag

e (
M

B)

Elapsed time (s)

Laplace
MTA

Decaf

 0

 1000

 2000

 3000

 0 100 200 300 400 500M
em

or
y

us
ag

e (
M

B)

Elapsed time (s)

Laplace MTA

 0

 1000

 2000

 3000

 0 100 200 300 400 500M
em

or
y

us
ag

e (
M

B)

Elapsed time (s)

Laplace
MTA

DataSpaces

 0

 1000

 2000

 3000

 0 100 200 300 400 500M
em

or
y

us
ag

e (
M

B)

Elapsed time (s)

Laplace
 MTA

DIMES

DataSpaces, Laplace DIMES, Laplace Flexpath, Laplace

Decaf, Laplace

Specifications:
1. Each Laplace processor outputs 128 MB.
2. Each DataSpaces server serves 16 Laplace processors.
3. Each Decaf server servers 2 Laplace processors.
4. Flexpath server is integrated into simulation processor.
Observations:
1. DIMES can save main memory usage via staging data at RDMA.
2. Decaf uses 2 GB memory, significantly more than we expect

(256MB). 13

Memory usage breakdown (cont’d)

Observations and analyses:
1. Data transformation and data buffer contribute largely to the memory

usage of Decaf (69 %).
2. The transformation and buffer are not only in the server side, but also in

simulation and analytics, which are wrapped by Decaf clients.
3. Extra data transformation between raw data and the internal object

with rich semantic information, the total memory consumption of Decaf
is 7 times that of the raw data size. 14

Memory usage breakdown (cont’d)

Observations and analyses:
1. Data transformation and data buffer contribute largely to the memory

usage of Decaf (69 %).
2. The transformation and buffer are not only in the server side, but also in

simulation and analytics, which are wrapped by Decaf clients.
3. Extra data transformation between raw data and the internal object

with rich semantic information, the total memory consumption of Decaf
is 7 times that of the raw data size. 15

Finding 3. The raw data transformation to high-level data abstraction with rich metadata and
semantics can be overly expensive with regard to the memory consumption, and therefore needs
to be carefully managed.

Memory usage (Cost of indexing)

Observations and analyses:
1. DataSpaces (higher indexing cost)

• SFC will construct a mapping between the 2D data and index space, which is then
evenly mapped to DataSpaces servers.

2. DIMES (smaller indexing cost)
• It stores the index at the simulation processors, rather than the metadata servers.

16

Using socket for data movement

Observations and analyses:
1. Socket is a system-wide resource and

limited by a maximum number.
2. When doing large-scale parallel data

movements, DataSpaces and Dimes fail to
handle the max socket connections, due to
lack of resource control mechanism on
sockets.

3. Although, RDMA resource is handled by
Cray uGNI. It still suffers “out of memory”
without an abstraction layer for resource
control.

17

Using socket for data movement

Observations and analyses:
1. Socket is a system-wide resource and

limited by a maximum number.
2. When doing large-scale parallel data

movements, DataSpaces and Dimes fail to
handle the max socket connections, due to
lack of resource control mechanism on
sockets.

3. Although, RDMA resource is handled by
Cray uGNI. It still suffers “out of memory”
without an abstraction layer for resource
control.

18

Finding 4. While using high-level protocols
is more convenient and portable,
proprietary low-level RDMA
implementations, yield substantial
performance. The accompanied challenge
is that the non-trivial engineering effort on
adapting the low level implementations to
various application scenarios.

Using shared mode
Observations and analyses:
1. The shared mode (co-running

simulation, in-memory framework
and analysis on one node) can
improve about 10 % of performance.

2. Not all HPC systems support shared
mode well. E.g. Titan does not allow
two MPI instances run on one node
and Cori not allow heterogeneous
running.

3. Cori uses the dynamic RDMA
credentials (DRC) to allow for the
shared mode. DRC as a centralized
service, may be overwhelmed by
large-scale parallel data movement.

19

Using shared mode
Observations and analyses:
1. The shared mode (co-running

simulation, in-memory framework
and analysis on one node) can
improve about 10 % of performance.

2. Not all HPC systems support shared
mode well. E.g. Titan does not allow
two MPI instances run on one node
and Cori not allow heterogeneous
running.

3. Cori uses the dynamic RDMA
credentials (DRC) to allow for the
shared mode. DRC as a centralized
service, may be overwhelmed by
large-scale parallel data movement.

20

Finding 5. Despite the substantial performance
improvement (about 10%), shared memory is a
restricted running mode on some leadership HPC
systems due to security.

Comparison of Portability
Observations and analyses:
1. Hardware level: GPU is mostly not supported by the current in-memory libraries

and GPU-enabled workflows are required to take care of the movement between
GPU and CPU memory.

2. Transport layer: DataSpaces, DIMES and Flexpath support both TCP sockets as well
as high performance protocols. In contrast, Decaf wraps the workflow components
into an MPI communicator.

3. Cori uses the dynamic RDMA credentials (DRC) to allow for the shared mode. DRC
as a centralized service, may be overwhelmed by large-scale parallel data
movement.

21

Finding 6. To achieve high performance and portability for expert users, most of in-memory
libraries can be configured to reduce the layers of I/O stack and ported to low-level APIs. For
non-expert users without the knowledge of performance tuning, these libraries can be ported
to high-level abstraction API.

Comparison of Robustness
Issues of running in-memory workflows:
1. Out of RDMA

• Data movement can deplete the shared RDMA resources on a compute node.
2. Data dimension overflow

• The dimension size can be overflown, if it is set to 32-bit unsigned integer.
3. Out of main memory

• In-memory libraries might incur huge memory footprint, resulting in unexpected out
of memory aborts.

4. Out of sockets
• The socket descriptors can be depleted on a compute node.

5. Out of DRC
• A large scientific workflow may overwhelm the DRC.

22

Finding 7. Using sophisticate high-level abstractions does not always improve usability and
robustness. In an extreme run, available resources might be overwhelmed by high
abstraction overhead and lead to crash, particularly while running those data intensive
workflows.

Essentials of HPC in-memory computing

• Global in-memory object store (e.g. Dataspaces and DIMEs).
• + Data organized and staged at memory, can be accessed by various analytics via

common APIs, e.g. read, write.
• - HPC data with high dimension, difficult to be organized and indexed.
• - High dimension data complex mapping between in-memory storage and user

applications.
• - Lack of supporting in-memory N-to-N access.

• Data flow system.
• + No need to index data in other storage.
• + Low complexity on data organization and layout.
• - Predefine data flow path and data operations.

• Primitive data operations.
• Split, merge, reduce, transform and etc.

23

Thank you.

24

