
elbe cho
A new Storage Benchmark for AI et al

PPoPP’21 Workshop:

Benchmarking in the Data Center

Sven Breuner

sven.breuner@gmail.com

Chin Fang

fangchin@zettar.com

Background

Who?

Sven Breuner.

Creator of the BeeGFS parallel file
system.

Nowadays focus on all-flash
storage.

Why? Where?

https://github.com/breuner/elbencho

Understanding storage system

characteristics is key to data analytics

efficiency & scaling.

File system characteristics cannot be

derived from hardware specs.

https://github.com/breuner/elbencho
https://github.com/breuner/elbencho

What are typical storage metrics of interest?

Depending on workload and data format…

Especially in Deep Learning image recognition:

Lots of small file reads per second

-or-

Small random reads IOPS in large files

For databases:

Access latency

For HPC:

Streaming

-or-

Shared file writes

…all with high concurrency and typically on shared storage.

Flash storage embraces high concurrency, but too much

concurrency can have negative side effects (e.g. on the CPU).

1

2

3

What can elbencho show you?

All the metrics of interest ☺

from a single client or coordinated
across multiple clients

Live Statistics

$ elbencho /mnt/smb --hosts devel1,devel2

–r -t3 -n10 -N30 -s128k -b128k --lat --direct

OPERATION RESULT TYPE FIRST DONE END RESULT

========= ================ ========== ==========

READ Elapsed seconds : 12 14

Files/s : 130 127

IOPS : 130 127

Throughput MiB/s : 16 15

Total files : 1631 1800

Total MiB : 203 225

Files latency ms : [min=2 avg=44 max=565]

IO latency ms : [min=1 avg=35 max=548]

Phase: READ CPU: 1% Active: 2 Elapsed: 10s

Rank % DoneMiB MiB/s IOPS Files Files/s Act CPU Service

Total 68 153 14 117 1224 117 6 1

0 68 77 7 61 616 61 3 1 devel1

1 67 76 7 56 608 56 3 1 devel2

devel1:~$ elbencho --service

devel2:~$ elbencho --service

master1:~$ elbencho --hosts devel1,devel2 ...

Or alternatively:

master1:~$ elbencho --hostsfile myhosts.txt ...

Hint: Distributed runs are easy (without MPI)

devel1 devel2

Shared Storage

elbencho master

How to use elbencho?

Lots of small files
Benchmark path is a directory

▪ -r / -w Read or write files

▪ -t Number of threads

▪ -n Number of directories per thread

▪ -N Number of files per directory

▪ -s File size

Random read IOPS
Benchmark path is a directory

$ elbencho /mnt/smb/mydir

–r -t3 -n10 -N30 -s128k -b128k --direct

OPERATION RESULT TYPE FIRST DONE END RESULT

========= ================ ========== ==========

READ Elapsed seconds : 12 14

Files/s : 130 127

Throughput MiB/s : 16 15

Total files : 1631 1800

Total MiB : 203 225

$ elbencho –w –s 50g /mnt/tmpfs/myfile

$ elbencho –r –t 4 -b 4k --lat --direct --rand --timelimit 10

/mnt/tmpfs/myfile

OPERATION RESULT TYPE FIRST DONE END RESULT

========= ================ ========== ==========

READ Elapsed seconds : 10 10

IOPS : 130214 130214

Throughput MiB/s : 509 509

IO latency ms : [min=1 avg=35 max=548]

Time limit (in seconds) can be used to avoid long

wait times that won’t change the IOPS result

Bonus Feature #1: elbencho for GPUs

GPU data transfer via CUDA GPUDirect Storage (GDS)

HPC Cluster
Dozens or hundreds of nodes per rack

AI Cluster
5 nodes per rack

with I/O demands of dozens/hundreds

1MB random reads via host memory into GPU memory

dgx-a100$ elbencho -t 128 -r -s10g -b 1m --direct –rand

/data/file{1..128} --gpuids "0,1,2,3,4,5,6,7" --cuhostbufreg

Result: 45.7GB/s

Read 512000 small 128KiB files via host memory into GPU memory

dgx-a100$ elbencho -t 128 -r --direct -n 40 -N 100 -s 128k

/data --gpuids "0,1,2,3,4,5,6,7" --cuhostbufreg

Result: 139444 files per sec

Using cuFile API for GDS

dgx-a100$ elbencho --cufile --gpuids "0,1,2,3,4,5,6,7" ...

Bonus Feature #2: elbencho charts

CSV file output elbencho-chart tool

$ for block in 4k 16k 64k 256k 1m;

do

elbencho --csvfile results.csv –t 4 -r -b $block

/mnt/tmpfs/file --timelimit 10 --rand

done

Generate line chart from CSV file

$ elbencho-chart -x "block size"

-y "MiB/s [last]" -Y "IOPS [last]" results.csv

Bar charts are also possible

$ elbencho-chart --bars ...

Storage Sweep

Who?

Chin Fang.

Founder and CEO of Zettar Inc.

Zx: a Universal Data Mover for
moving data at scale and speed

Why? Where?

https://github.com/breuner/elbencho/con

trib/storage_sweep/

Enabling the following:

● Understand a storage service quickly

and simply

● Pick the most performant entry from all

candidates easily and accurately

● Evaluate the impact of a tuning

approach

● Many more

https://github.com/breuner/elbencho/contrib/storage_sweep/
https://github.com/breuner/elbencho
https://github.com/breuner/elbencho/contrib/storage_sweep/

Moving data at scale and speed & storage? A water transport analogy

Picture credit: Wikipedia

A Co-Design Endeavor!

Get these

ready first!

The 1st Step: Storage I/O Benchmarking - I

Recommendations?

What to do?

1

3

2

4

5 Why?

Methodology?

Or

The 1st Step: Storage I/O Benchmarking - II

2nd: storage sweep

1

3

2

An example

A combined line chart with the measured storage throughput for each file size (blue line),

together with both the Zettar zx transfer data rates attained with a single run carried out by

Zettar (orange line), and the average of five runs carried out by ESnet (green line). The X-axis

labels are the test dataset names. For example, 2x512GiB means the dataset has 2 files, each

is 512GiB in size. Thus, the dataset has an overall size 1TiB = 2 x 512GiB

Some references

Ezra Kissel, Chin Fang, Zettar zx Evaluation for ESnet DTNs.

https://bit.ly/3pG4H24

1

2

Ezra Kissel, 100G DTN Experiment: Testing Technologies for Next-Generation File Transfer.

https://bit.ly/3qfJi0g
3

https://bit.ly/3pG4H24
https://www.osti.gov/biblio/1756618
https://bit.ly/3qfJi0g

What does storage sweep tools do for you?

Now what?

https://github.com/breuner/elbencho

Sven Breuner

sven.breuner@gmail.com

Chin Fang

fangchin@zettar.com

Share feedback or contribute

Download, understand your system and then

run your workload most efficiently

https://github.com/breuner/elbencho/

