elbencho

A new Storage Benchmark for Al et al

PPoPP'21 Workshop:
Benchmarking in the Data Center

Sven Breuner
sven.breuner@gmail.com

Chin Fang
fangchin@zettar.com

Who?
Sven Breuner.

Creator of the GFS parallel file
system.

Nowadays focus on all-flash
storage.

— : .
RANSFORMING HPC AND THE |DATA CeNrgy
-XPERIS N/ C COMPUTING SOLUT

Why?

Understanding storage system
characteristics is key to data analytics
efficiency & scaling.

File system characteristics cannot be
derived from hardware specs.

Where?

() GitHub

https://qgithub.com/breuner/elbencho

https://github.com/breuner/elbencho
https://github.com/breuner/elbencho

What are typical storage metrics of interest?

Depending on workload and data format...

a Especially in Deep Learning image recognition:
Lots of small file reads per second

Or
Small random reads IOPS in large files

For HPC:
Streaming

-or-

Shared file writes

0 For databases:
Access latency

...all with high concurrency and typically on shared storage.

Q Flash storage embraces high concurrency, but too much
- concurrency can have negative side effects (e.g. on the CPU).

What can elbencho show you?

All the metrics of interest © Live Statistics
from a single client or coordinated o: READ
across multiple clients
Total 68 117 1224

0] 08 777 / ol 616
1 o7 /6 / 56

S elbencho /mnt/smb --hosts devell,devel?2
-r -t3 -nl0 -N30 -s128k -bl28k --lat --direct

OPERATION RESULT TYPE FIRST DONE END RESULT

Elapsed seconds :
Files/s : elbencho master

IOPS g

Throughput MiB/s J:

Total files

Total MiB 2

Files latency ms |: [min=2 avg=44 max=565]
IO latency ms : [min=1 avg=35 max=548]

devel?

WOBIIIIIIIIIIS /77777

PN

Q Hint: Distributed runs are easy (without MPI)

devell:~$ elbencho --service
devel2:~$ elbencho --service
masterl:~$ elbencho --hosts devell,devel?2

Or alternatively:
masterl:~$ elbencho --hostsfile myhosts.txt

Shared Storage

How to use elbencho?

Lots of small files Random read IOPS
Benchmark path is a directory Benchmark path is a directory

$ elbencho /mnt/smb/mydir
-r -t3 -n10 -N30 -s128k -bl28k —--direct

$ elbencho -w -s 50g /mnt/tmpfs/myfile

S elbencho —-r -t 4 -b 4k --lat --direct --rand --timelimit 10

OPERATION RESULT TYPE FIRST DONE END RESULT /mnt/tmpfs/myfile

Elapsed seconds
Files/s
Throughput MiB/s
Total files
Total MiB

OPERATION RESULT TYPE FIRST DONE END RESULT

Elapsed seconds

IOPS : 130214 130214
Throughput MiB/s : 509 509
IO latency ms : [min=1 avg=35 max=548

/ Read or write files (in seconds) can be used to avoid long

Number of threads wait times that won't change the IOPS result
Number of directories per thread

Number of files per directory
File size

Bonus Feature #1: elbencho for GPUs

GPU data transfer via CUDA

GPUDirect Storage (GDS)
1MB random reads via host memory into GPU memory

Using cuFile API for GDS
elbencho -t 128 -r -s10g -b Im --direct -rand
/data/file{1..128} --gpuids

id

elbencho --cufile --gpuids
"0,1,2,3,4,5,6,7" --cuhostbufreg
Result: 45.7GB/s

"0,1,2,3,4,5,6,7"

Read 512000 small 128KiB files wvia host memory into GPU memory
elbencho -t 128 -r --direct -n 40 -N 100 -s 128k
/data --gpuids "0,1,2,3,4,5,6,7" --cuhostbufreg

Result: 139444 files per sec

Legacy GPUDirect Storage
MEMORY MEMORY

S
—l
‘ CPU DATA PATH . CPU

l'llll]l
Illllt

o

l\

- — D N—m—s i
STORAGE PCle SWITCH GPU STORAGE PCle SWITCH GPU - m l
 with /O d

Bonus Feature #2: elbencho charts

CSV file output elbencho-chart tool

Generate line chart from CSV file
elbencho-chart -x "block size"
-y "MiB/s [last]" -Y "IOPS [last]" results.csv

S for block in 4k 16k 64k 256k 1m;
do
elbencho --csvfile results.csv -t 4 -r -b Sblock

/mnt/tmpfs/file --timelimit 10 --rand

Bar charts are also possible

done elbencho-chart --bars

IOPS

Random read on ramdisk Random read on ramdisk
60000 - T 4.5x10° 60000 4.5x10°
C — 4x10° — 4x10°
50000 — . 50000 —
— 3.5x10 - 3.5x10°
2 40000 . — 3x10° £ 40000 — L 3x10°
2 @
2 30000 K F 250" P = L 25x10°
5 = 2 30000 —
% — 2x108 Q 5 L 2x10°
= <]
F 20000 — — 1.5x10° € 20000 — — 1.5x10°
6
Y — 1x10 — 1x10°
_ 10000 — 10000 —
READ s R — O — — 500000 READ MiB/s [tast] [N — 500000
READ IOPS [last] == o == 0 | | T\I_ 0 READ IOPS [last] [N o L,
© 13 © 3 ©
&) o) @) W A © & © 3 ©
Q &) A2) N %)) o) D) X A
W & & 9 & " X P NS
N & @ K S P LR

Block size Block size

Storage Sweep

Who?
Chin Fang.
Founder and CEO of Zettar Inc.

Zx: a Universal Data Mover for
moving data at scale and speed

— e
50 B AW o

atal” Challenge 2019

Why?

Enabling the following:

e Understand a storage service quickly
and simply

e Pick the most performant entry from all

candidates easily and accurately

e Fvaluate the impact of a tuning
approach

e Many more

Where?

) GitHub

https://github.com/breuner/elbencho/con

trib/storage sweep/

https://github.com/breuner/elbencho/contrib/storage_sweep/
https://github.com/breuner/elbencho
https://github.com/breuner/elbencho/contrib/storage_sweep/

Moving data at scale and speed & storage? A water transport analogy

Get these
ready first!

oL CHERRY @
POWERHOUSE LAKE

(169 MW) é

sl Tounsan?

NATIONWIDE

MOCCASIN
POWERHOUSE
(110 MW)

BAY DIVISION TUNNEL
PIPELINES 1 &2 KIS
SAN ANTONIO g POWERHOR
Y HETCHY LAKEDONPEDRO %
(N g = iver (Modesto & Turlock
— Tuolumneé Rive Irigation Dls:rlr.ts)

2 CALAVERAS
RESERVOIR

BAY DIVISION
PIPELINES 3 & 4

About 175 mil&s_(_z.sz km) across

2,

The Tt Step: Storage /O Benchmarking - |

i

—

1{1]

Choices of toold fio?
Recommendations?

Methodology?

What to do?

Why?

¥ master - P 2branches (»11tags

bin

build_helpers

fangchin contrib: polished storage_sweep (former mtelbencho) by Zettar's Chin ...

Go to file Add file =

Y9 76 commiits

all: initial commit

make: fix typos in Makefile related to auto-detection of CUDA path

fBlesaf 9 hours ago

6 months ago

2 months ago

contrib/storage_sweep

contrib: polished storage_sweep (former mtelbencho) by Zettar's Chin ..

9 hours ago]

dist/etc/bash_completion.d
external

packaging

scripts

source

.gitignore

CHANGELOG.md

LICENSE

Makefile

R Bl -rEE-rEE-EE B B BN BN B Bl B A |

README.md

README.md

elbencho

rwmix: add new option for mixed read+write

communication: update embedded http server to |atest version
gds: update path detection for GPUDirect Storage v0.9 beta
worker: change elapsed time res from milli to microsecs

rwmix: add new option for mixed read+write

args: add bash completion support

rwmix: add new option for mixed read+write

Initial commit

rwmix: add new option for mixed read+write

comments: fixed minor typos in comments

9 days ago
2 months ago

2 months ago

4 months ago

9 days ago
2 months ago
9 days ago
6 months ago
9 days ago

last month

About

A distributed storage benchmark for
file systems and block devices with

support for GPUs
benchmark storage nvme
deep-learning live-stats distributed
parallel file-systems block-storage

ior mdtest fio gpu

0 Readme

&8 GPL-3.0 License

Releases

11 tags

Packages

Mo packages published

Contributors 2

. breuner Sven Breuner

‘ fangchin Chin Fang

The Tt Step: Storage |/O Benchmarking - |I

G 1t production dataset

© 2 storage sweep

© Anexample

Zettar zx avg rate over ESnet 100G SDN testbed (2500 miles; ~90ms RTT) vs avg storage throughput

Tuned results for hyperscale data (overall size >= 1TiB, nhumber of file/object > 1M, or both)
120

Storage throughput measured
with e1bencho [3-run average)
e 7ettar zx rate (1 run} ozg 9140
B88.97 -
m ESNet zx rate (5 run average)

100 T 9565 g

9481 535
9168

&34 m13 mn;
—

7986 79.70,
T—

P 7683 7716 7783 f T8 7696 75_54/?537 ye
M

o

a

L]

=

/]

2

©

L)

&

g In this region, Zettar zx predictably achieves 80+% of the

measured storage throughput for each file size, provided
there is:

1. Sufficient computing power

2. Enough network bandwidth

The results shown are obtained with two Docker containers

. el
0@% &
7

® P D X R D D 2 L R

I N

o’,b+ do‘a ,@* ,\Q’ o P ¥ & A g & W
P

Dataset names

A combined line chart with the measured storage throughput for each file size (blue line),
together with both the Zettar zx transfer data rates attained with a single run carried out by
Zettar (orange line), and the average of five runs carried out by ESnet (green line). The X-axis
labels are the test dataset names. For example, 2x512GiB means the dataset has 2 files, each
is 512GiB in size. Thus, the dataset has an overall size 1TiB = 2 x 512GiB

Some references

Chin Fang, Les Cottrell, Data Movement Categories.
https://www.osti.gov/biblio/1756618

Ezra Kissel, Chin Fang, Zettar zx Evaluation for ESnet DTNs.
https://bit.ly/3pG4H24

Ezra Kissel, 100G DTN Experiment: Testing Technologies for Next-Generation File Transfer.
https://bit.ly/39fJi0g

https://bit.ly/3pG4H24
https://www.osti.gov/biblio/1756618
https://bit.ly/3qfJi0g

HILT=T
ADETSHE
AID95E%y

D8I T=E
oFI=aT
AIDEEXEE
ADTEET
HAIS8X8ET
BIEOFX95E
AISEXETS
SOTEEFEOT
AWETS*BFOE
AWISTERIG0F
AIWEETREGTE
AW FIEFREST
HIWEEXEILLE
AIWITEEESSS
AWEXZLOTET
AWFXFETZOE
AIWEXEREFLS
AWTX9L98F0T
AHETS*9L58F0T
BH9SEX9 S8 FOT
HIHEZT*9LS8F0OT
BAFORILS8F0T
AHZEXILSBFOT
AASTHALS8F0T

Datasets

What does storage sweep tools do for you?

Storage sweep for full range over 3 runs on 2021-01-11

Storage sweep for full range over 3 runs on 2021-02-14

Mean-value

l | | l
w = o~ = [=#) w
— — — —

(sdqo) ndyEnoap ueagy

[
Mean-value

30
25

(sdqo) indySnoap uweagy

| |
=T L8 R

AHEXLS8F0T
AAFELS8F0T
AHZXLS8F0T
AAT=9L58F0T

JUTXT
FIDTTEE

=1k Tt o
219878
A109%aT
FIDTEXEE
09T=Fa
2108¥8ET
F10Ha5E
FIOTHETS
OT=FI0T
AIWETS*BF0E
WSS Ex960t
QIMBTT*E6TE
AFIEFEEST
QIMEE=BILIE
IS T=EESSS
QINBXELOTET
AAFFFTESE
AIWEXBBIRIS
AWT*9L58F0T
AUATTS*9L580T
AIA9SEX9L58F0T
QUABET=9L58F0T
AUAFSSL SEE0T
QUATEXSLOBE0T
AUAT*9L 98E0T
ArAB=9L580T
AUAF=9L58F0T
QAT LS8E0T
QUAT*9L58F0T

Datasets

Now what?

Download, understand your system and then
run your workload most efficiently

O GltHUb Share feedback or contribute

https://github.com/breuner/elbencho

Chin Fang
fangchin@zettar.com

Sven Breuner
sven.breuner@gmail.com

https://github.com/breuner/elbencho/

