
TailWAG: Tail Latency Workload 
Analysis and Generation

Heng Zhuo
University of Wisconsin-Madison

Title slide



TailWAG

Executive Summary

• Introduction and Background

• Tail Latency.

• Problems and challenges.

• TailWAG

• Workload analysis.

• Workload generation and validation.

• Case Study.

• Conclusion
2



Cloud Computing, Data Center, Supercomputer

TailWAG

An eight-rack pod of Google's liquid-cooled TPU version 3 servers for artificial intelligence workloads. (Image: Google)
3



Tail latency in server workload

TailWAG
4

6X
1.6X

Mean latency may not be representative for a system over time.



Server at scale

Meisner, D. & Sadler, C.M. & Barroso, Luiz & Weber, W. & Wenisch, Thomas. 
(2011). Power management of Online Data-Intensive services. TailWAG

5

Singler user request may end up using over hundreds of server nodes.



Causes for tail latency: Kernel Real-Time Scheduling

• Application can be run on Real-Time(higher) priority. (FIFO/Round-Robin).

• Linux Kernel, by default: only 95% of CPU time can be used by Real-Time.

TailWAG
6

Note, this be dangerous, such as deadlock.



Causes for tail latency: (Ethernet) Interrupt handling

TailWAG
7

Interrupt Handling is bad, we should avoid it.



Causes for tail latency: (Ethernet) Interrupt handling

• For a 4-core system:

• SEP: reserving core 1 for 

interrupt handling; 

• MIX: using all 4 cores for both 

interrupts and server threads.

TailWAG
8

Tradeoff question: Better Latency or Better Throughput?



TailWAG

TailWAG: Workflow

9

Native Machine 
Experiment
Data collection

Workload Analysis

Parameter 
Generation

Design space 
exploration

Parameters tuning Parameters sweeping

Workload Generation



TailWAG

Executive Summary

• Introduction and Background

• Tail Latency

• Problems and challenges

• TailWAG:

• Workload analysis.

• Workload generation and validation.

• Case Study.

• Conclusion
10



TailWAG

Executive Summary

• Introduction and Background

• Tail Latency

• Problems and challenges

• TailWAG:

• Workload analysis.

• Workload generation and validation.

• Case Study.

• Conclusion
11

Spoiler alert, we use 3 sets of parameters.



Workload Analysis: Tailbench

• Harness: single/multiple server thread(s) and client thread(s).

• Applications: online search, key-value store, image recognition, etc.

Server 
node

Client 
node(s)

H. Kasture and D. Sanchez, "Tailbench: a benchmark suite and evaluation methodology for latency-
critical applications," 2016 IEEE International Symposium on Workload Characterization (IISWC), 2016TailWAG

12



Analysis: Experimental Setup

• Generated data from server running on :

• SMT(Simultaneous	multithreading), deep sleep disabled.

• Client connected with direct Gigabit Ethernet.

TailWAG
13



Analysis: Service Time Distribution

TailWAG
14

Probability function is easier to identify the shape



Analysis: Service Time Distribution

TailWAG
15

Note: only analysis now, everything in Python for now.

• Using SciPy provided stats, get:

• Mean;

• Variance.

• Feed into NumPy random, 

generate data.



Analysis: Parameter Tuning

TailWAG
16

Using one distribution is not enough for some application.



Analysis: Service Time Distribution

TailWAG
17

Using 1-3 distributions can cover service time behavior.



Analysis: Critical Section

• Imgdnn: better than linear.
• silo: worse than linear, due to critical section relating to TCP stack.
• moses: worse than linear after 2 threads, due to memory bottleneck.

TailWAG
18



Analysis: Timing Disturbance

TailWAG
19

Wide distribution make application more robust to timing disturbance.

SEP: reserving core 1 for interrupt handling.
MIX: using all 4 cores for both interrupts and server threads.



TailWAG

Executive Summary

• Introduction and Background

• Tail Latency

• Problems and challenges

• TailWAG:

• Workload analysis.

• Workload generation and validation.

• Case Study.

• Conclusion
20



Workload Generation

• Parameters assemble:

• Written in C++.

• 30 lines of code.

• Each loop = one query:

• Service time distribution.

• Critical section (Receive/ Sent).

• Any timing disturbances.

TailWAG
21

30 lines of code representing millions of lines?



Validation: Single Thread

TailWAG
22

Using a set of main distribution mimics latency and throughput performance.



Validation: Critical Section

TailWAG

• img-dnn and silo: behaves close with critical section parameter.
• moses: showing optimal upper bound without memory bottleneck.

23



Validation: Timing Disturbance

TailWAG

• silo and xapian: behaves close with timing disturbance parameter.
• moses: showing optimal upper bound without memory bottleneck.

24



TailWAG

Executive Summary

• Introduction and Background

• Tail Latency

• Problems and challenges

• TailWAG:

• Workload analysis.

• Workload generation and validation.

• Case Study.

• Conclusion
25



Case Study: Hardware Innovation

• DNN algorithm revolution:
• Complex model for better accuracy
• Annual 1.46X FLOPS increase

• DNN hardware revolution
• TPU v1: 1.7X speedup
• TPU v2: 70X speedup

• Parameter change, only service time 
distribution :
• Baseline: 395 ms
• Big Model: 671 ms
• TPU v1: 232 ms
• TPU v2: 5.6 ms

TailWAG
26[1] Jouppi, Norman P., et al., "In-datacenter performance analysis of a tensor processing unit., ISCA, 2017.

[2] Jouppi, Norman P., et al., "Ten Lessons From Three Generations Shaped Google’s TPUv4i : Industrial Product," ISCA, 2021.

Easy design space exploration.



Case Study: Garbage Collection

• plgc(Parallel Garbage Collector):
• Classic, throughput oriented.
• Longer pausing time, can be over 100 ms.

• zgc(Z Garbage Collector):
• Newer feature, latency oriented, evolving 

every java version.
• Often but short pausing time, less than 1 ms.

TailWAG

• Parameter change:
• plgc: timing disturbance (50 ms every 10 s).
• zgc : 10% more on service time distribution.

27

Easy run time configuration exploration.



Case Study: Hardware Accelerator

• System with 4 cores:

• SEP: 3 threads, for better latency.
• MIX: 4 threads, for better throughput.

• Parameter change on timing disturbance:
• MIX: 4 µs.

• Hardware Accelerator: reduce to 0.5 µs.
• Optimal: Without any, 0 µs.

TailWAG
28

SEP: reserving core 1 for interrupt handling.
MIX: using all 4 cores for both interrupts and server threads.Easy design space exploration.



TailWAG

Executive Summary

• Introduction and Background

• Tail Latency

• Problems and challenges

• TailWAG:

• Workload analysis.

• Workload generation and validation.

• Case Study.

• Conclusion
29



Conclusion

• Server Workload:

• Tail latency and throughput are both important.

• Tuning system and design space exploration are difficult.

• TailWAG: Tail Latency Workload Analysis and Generation

• 30 lines of code for generated workload. ✅

• Validated against real workload. ✅

• Repeatable behavior and measurements. ✅

• Enable exploration on future design(hardware/software). ✅

30
TailWAG



Closing slide


