Overview of SPEC HPC Benchmarks and Details of the SPEChpc 2021 Benchmark

Robert Henschel Project Director Research Engagement Indiana University

spec[®]

Content

- SPEC and SPEC HPG
- SPEC HPG Benchmark Suites
- Overview SPEChpc 2021
- First Results

Standard Performance Evaluation Corporation

- Worldwide non-profit consortium formed in 1988
- Develops industry-standard performance and energy efficiency benchmarks, mainly for servers and workstations
- Creates benchmarks through member collaboration with a focus on realworld applicability
- Sponsors research and international conferences addressing diverse aspects of performance
- Its membership comprises more than 127 leading computer hardware and software vendors, educational institutions, research organizations, and government agencies worldwide.
- https://www.spec.org/consortium/

spec[®]

High Performance Group

- Membership
 - Industry: 14 Academia: 23
- Active Participants
 - AMD, ATOS, HPE, Intel, Lenovo, NextSilicon, NVIDIA, Siemens
 - Argonne NL, Brookhaven NL, Indiana University, Lawrence Berkeley NL, Oak Ridge NL, RWTHA Aachen University, Stony Brook University, Texas Advanced Computing Center, Technische Universität Dresden, University of Basel
- Benchmarks
 - Represent large, real applications, in scientific and technical computing,
 - Use industry standard parallel application programming interfaces (APIs), OpenACC, OpenMP and MPI
 - Support shared-memory and message passing programming paradigms,
 - Can evaluate shared-memory computers, distributed-memory computers and workstation clusters as well as traditional massively parallel processor computers,
 - Come in several data sets sizes (from a few minutes to days of execution time),

Prior SPEC HPG Benchmarks

- SPEC MPI®2007: Performance of compute intensive applications using the Message-Passing Interface (MPI)
- SPEC OMP®2012: Measuring performance using applications based on the OpenMP 3.1 standard for shared-memory parallel processing.
- SPEC ACCEL[®]: Performance with computationally intensive parallel applications running under the OpenCL, OpenACC, and OpenMP 4 target offloading APIs.
- **SPEChpc[™] 2021:** Performance of hybrid applications using MPI plus OpenACC, OpenMP, OpenMP target offload or pure MPI.

SPEChpc Benchmark Suites

- Combines elements of previous SPEC HPG suites to create an applicationbased benchmark which can be run using MPI and optionally hybrid with a node-level parallel model
- Four suites, Tiny, Small, Medium, and Large, with increasing workload sizes, allows for appropriate evaluation of different sized HPC systems, ranging from a single node to many hundreds of nodes.
- The suites contain 9 full and proxy scientific applications from various domains written in C, C++, or Fortran.
- Comprehensive support for multiple programming models, including MPI, MPI+OpenACC, MPI+OpenMP, and MPI+OpenMP with target offload.
- Able to run on either purely CPUs or offloaded to accelerators

SPEChpc Design Choices (highlights)

- Focus on Portable General Performance rather than allowing architecture specific application tuning
 - Rely on compiler rather than application engineer
 - Though researcher are encouraged to investigate code modifications and optimization provided the results are marked as an estimate.

Split OpenMP into two ports

- Thread/Task based targeting multicore-CPU
- Target based targeting accelerators
- Because of potential bias, directive modification is allowed in peak
- Benchmark selection based on availability of the code, portability, scalability, and performance characteristics.

spec[®]

SPEChpc 2021 Benchmarks

Benchmark	Domain	Submitter
LBM D2Q37	Computational Fluid Dynamics	Sebastiano Fabio Schifano, University of Ferrara and INFN
Soma	Polymeric Systems	Ludwig Schneider for the SOMA collaboration
Tealeaf	High Energy Physics	Simon McIntosh-Smith, University of Bristol
Cloverleaf	High Energy Physics	Simon McIntosh-Smith, University of Bristol
MiniSweep	Radiation Transport	Wayne Joubert, Oak Ridge National Laboratory
POT3D	Solar Physics	Ron Caplan, Predictive Science
SPH-EXA	Astrophysics and Cosmology	Florina Ciorba, University of Basel
HPGMG-FV	Cosmology and Combustion	Christopher Daley, Lawrence Berkely National Laboratory
miniWeather	Weather Modeling	Matt Norman, Oak Ridge National Laboratory

Results: https://www.spec.org/hpc2021/results/hpc2021.html

SPEChpc2021 Medium (10):

		Syste	R	esults			
Test Sponsor	System Name	Node-level Parallelization Model	Compute Nodes Used	MPI Ranks	Base Threads Per Rank	Base	Peak
Intel	Endeavour: Intel Server M50CYP2UR208 (Intel Xeon Platinum 8360Y) HTML CSV Text PDF PS Config	OMP	16	192	6	0.682	Not Run
Intel	Endeavour: Intel Server M50CYP2UR208 (Intel Xeon Platinum 8360Y) HTML CSV Text PDF PS Config	OMP	32	256	9	1.36	1.47
Intel	Endeavour: Intel Server M50CYP2UR208 (Intel Xeon Platinum 8360Y) HTML CSV Text PDF PS Config	OMP	64	1152	4	2.79	2.96
Intel	Endeavour: Intel Server M50CYP2UR208 (Intel Xeon Platinum 8360Y) HTML CSV Text PDF PS Config	OMP	128	1536	6	5.62	5.97
Oak Ridge National Laboratory	Summit: IBM Power System AC922 (IBM Power9, Tesla V100-SXM2-16GB) HTML CSV Text PDF PS Config	ACC	700	4200	1	41.3	Not Run
RWTH Aachen University	CLAIX-2018: Intel Compute Module HNS2600BPM (Intel Xeon Platinum 8160) HTML CSV Text PDF PS Config	MPI	100	4800	1	2.00	2.32
Technische Universitaet Dresden	Taurus: bullx DLC B720 (Intel Xeon E5-2680 v3) HTML CSV Text PDF PS Config	MPI	85	2040	1	1.04	Not Run
Texas Advanced Computing Center	Frontera: PowerEdge C6420 (Intel Xeon Platinum 8280) HTML CSV Text PDF PS Config	OMP	512	1024	27	15.8	Not Run
Texas Advanced Computing Center	Frontera: PowerEdge C6420 (Intel Xeon Platinum 8280) HTML CSV Text PDF PS Config	OMP	1024	2048	27	24.3	Not Run
Texas Advanced Computing Center	Frontera: PowerEdge C6420 (Intel Xeon Platinum 8280) HTML CSV Text PDF PS Config	OMP	2048	4096	27	30.8	Not Run

SPEChpc2021 Large (5):

		Syste	Re	sults			
Test Sponsor	System Name	Node-level Parallelization Model	Compute Nodes Used	MPI Ranks	Base Threads Per Rank	Base	Peak
Oak Ridge National Laboratory	Summit: IBM Power System AC922 (IBM Power9, Tesla V100-SXM2-16GB) HTML CSV Text PDF PS Config	ACC	1400	8400	1	41.0	Not Run
Technische Universitaet Dresden	Taurus: bullx DLC B720 (Intel Xeon E5-2680 v3) HTML CSV Text PDF PS Config	MPI	300	7200	1	0.983	Not Run
Texas Advanced Computing Center	Frontera: PowerEdge C6420 (Intel Xeon Platinum 8280) HTML CSV Text PDF PS Config	OMP	2048	4096	27	31.2	Not Run
Texas Advanced Computing Center	Frontera: PowerEdge C6420 (Intel Xeon Platinum 8280) HTML CSV Text PDF PS Config	OMP	1024	2048	27	17.3	Not Run
Texas Advanced Computing Center	Frontera: PowerEdge C6420 (Intel Xeon Platinum 8280) HTML CSV Text PDF PS Config	OMP	512	1024	27	8.47	Not Run

Last update: Monday, 21 March 2022, 09:05

Result Details

SPEChpc [™] 2021 Medium Result Copyright 2021 Standard Performance Evaluation Corporation																		
NEC Corporation										SF	PEC	hpc 20)21	me	d ba	se :	= 2.	00
(Test Sponsor: RWTH Aachen University)										~1					<u>a_</u> 00		_	
CLAIX-2018: Intel Compute Module HNS2600BPM (Intel Xeon Platinum 8160)										SF	PEC	hpc 20)21_	me	d_pe	ak	= 2.	.32
hpc2021 License: 055A Test Date:												5	Sep-202	1				
Test Sponsor: RWTH Aachen University													Hardv	vare A	vailabi	lity: 1	Nov-201	18
Tested by:		RWT	H Aachen	Univers	ity								Softwa	are Av	vailabili	ty: S	Sep-202	0
0 1.00 2.00 3.00 4.00																		
705 lbm .	. Ĺ							1.65		Ì								
/05.1011_1	ш							1.7	1									
5 10 / 1 6							1.44	4										
718.tealeaf_1	n								1 80									
	i								1.0,			2.58						
719.clvleaf_1	n												270					
	i						1	.53					2.19					
728.pot3d_1	n							11 - 1										
									1.0	$2^{2.03}$								
734.hpgmgfv_i	n								1.9	2								
	1										2.28					2.6		
735.weather	n –									_						3.2	56	
_																	3.73	
		- SPE	Chpc 2021	_med_ba	se (2.0	0)					SPEC	1pc 2021_n	1ed_peak	x (2.32))			
]	Res	ults	Tał	ole								
Banahanank	Madal	Danka	Thuds/Duly	Essenda	ase	Cda	Datia	E	Datia	Madal	Danka	Thurle (Durle	l Caranada	Peak	Course da	Datia	Records	Detia
705.lbm m	MPI	4800		744	1.65	759	1.61	731	1.68	MPI	4800		736	1.67	713	1.72	715	1.71
718.tealeaf m	MPI	4800	1	890	1.52	936	1.44	987	1.37	MPI	4400	1	713	1.89	739	1.83	693	1.95
719.clvleaf_m	MPI	4800	1	709	2.61	759	2.44	718	2.58	MPI	4400	1	662	2.79	<u>663</u>	<u>2.79</u>	665	2.78
728.pot3d_m	MPI	4800 1 1154 1.60 1208 1.53 1216 1.55							1.52	MPI	4400	1	912	2.03	898	2.06	<u>912</u>	2.03
734.hpgmgfv_m	MPI	PI 4800 1 518 1.93 522 1.92 522 1.92							1.92	MPI	4400	1	439	2.28	437	2.29	438	2.28
735.weather_m	MPI	4800	1	643	3.73	674	3.56	<u>674</u>	<u>3.56</u>	MPI	4800	1	642	3.74	647	3.71	<u>643</u>	<u>3.73</u>
SPEChpc 2021_med_base = 2.00																		
SPEChpc 2021_med_peak = 2.32																		
Results appear in the order in which they were run. Bold underlined text indicates a median measurement.																		

		3.5		
spec"	SPEChpc ^{IM} 2021 Copyright 2021 Standard Perfo	mance Eva	ediun aluation Corporatio	n Kesult
NEC Corpoi	ration		SPECh	pc2021 med base = 2.00
(Test Sponsor: RWTH A	Aachen University)		of Len	pe2021_ined_buse = 2.00
CLAIX-2018: Intel Com	npute Module HNS2600BPM (Intel Xeon Platinum	n 8160)	SPECh	$pc2021_med_peak = 2.32$
hpc2021 License: 0	955 A			Test Date: Sep-2021
Test Sponsor: F	WTH Aachen University			Hardware Availability: Nov-2018
Tested by: F	RwTH Aachen University			Software Availability: Sep-2020
Н	ardware Summary			Software Summary
Type of System:	Homogenous	Compi	ler:	C/C++/Fortran:
Longute Node:	Intel HINS2000BPB Intel Omni Path 100 Series	MDLL	ibrory	Intel Compliers for Linux 2021.5.0
Compute Nodes Used	1. 100	Other 1	MPI Info	None
Total Chips:	200	Other S	Software:	None
Total Cores:	4800	Base P	arallel Model	: MPI
Total Threads:	4800	Base R	anks Run:	4800
Total Memory:	19200 GB	Base T	hreads Run:	1
Max. Peak Threads:	1	Peak P	arallel Model	s: MPI
		Minim	um Peak Ran	ks: 4400
		Maxin Max E	ium Peak Ran	iks: 4800
		Min P	eak Threads:	1
	Node Description	Intol	UNC26	
	Noue Description:	inter	HN52 0	DUUDE D
	Hardware			Software
Number of nodes:	100	Accele	rator Driver:	-
Uses of the node:	compute	Adapte	er:	Omni-Path HFI Silicon 100 Series
Model:	Intel Corporation	Adapte	r Firmware:	1.27.0
CPU Name:	Intel Xeon Platinum 8160	Operat	ing System:	CentOS Linux release 7.9.2009
CPU(s) orderable:	1-2 chips	Local I	File System:	xfs
Chips enabled:	2	Shared	File System:	1.4 PB NFS (Concat EMC Isilon X410) over Omni-Path
Cores enabled:	48	System	n State:	Multi-user, run level 3
Cores per chip:	24	Other S	Software:	None
Threads per core:	I Intel Tarks Depart Tarks 1			
CPU Characteristics:	Intel Turbo Boost Technology up to 3.7 GHz			
Primary Cacher	2100 32 KB I + 32 KB D on chin per core			
Secondary Cache	1 MB I+D on chip per core			
L3 Cache:	33 MB I+D on chip per chip			
Other Cache:	None			
Memory:	192 GB (12 x 16 GB 2RX4 PC4-2666V-R)			
Disk Subsystem:	Intel SSDSC2KG48, 480GB, SATA			
Other Hardware:	None			
Accel Count:				
Accel Vendor				
Accel Type:				
Accel Connection:				
Accel ECC enabled:				
Accel Description:				
Adapter:	Omni-Path HFI Silicon 100 Series			
Number of Adapters:	1			
Slot Type:	PCI Express Gen3 x16			
Data Kate:	100001IIS/S			
Forts Used:	1			

Overview – Results

• Result example

applications

SPEChpc [™] 2021 Medium Result Copyright 2021 Standard Performance Evaluation Corporation																		
NEC Corporation									SPEChnc 2021 med hase -2.00									
(Test Sponsor: F	t Sponsor: RWTH Aachen University)								51	LU	npe 20	<u></u>	inc	u_00	.50	- 2.	00	
SPEChpc 2021 med peak = 2.3											32							
CLAIX-2018: Intel Compute Module HNS2600BPM (Intel Xeon Platinum 8160)												52						
hpc2021 License: 055A Test Date: Sep-2021											1							
Test Sponsor	r:	RWTI	H Aachen	Univers	ity								Hardw	are A	vailabi	lity: N	Nov-201	8
Tested by:		RWTI	H Aachen	Univers	ity								Softwa	re Av	ailabili	ty: S	Sep-202	0
0 1.00 2.00 3.00 4.00																		
705.lbm m																		
/ •••••••								1.7	1									
718 tooloof	<u> </u>						1.44	<u>1</u>										
/10.tealeal_l									1.89	5								
710 . 1. 1 6	. L											2.58						
719.civiear_1	m												2 79					
	i						1	.53					2.19					
728.pot3d_1	m																	
	÷								1.9	$2^{2.03}$								
734.hpgmgfv_1	m									-								
											2.28					3 5	56	
735.weather_1	m 🗄															i		
		~	~														3.73	
		- SPE	Chpc 2021	_med_ba	se (2.0	0)					SPEC	npc 2021_n	ied_peak	: (2.32)				
]	Res	ults	Tał	ole								
Banchmark	Model	Donke	Thede/Dak	Feeende	Base	Seconde	Patio	Seconde	Patio	Model	Ponke	Thede/Duk	Facende	Peak Ratio	Seconde	Patia	Seconds	Potio
705.lbm m	MPI	4800	1	744	1.65	759	1.61	731	1.68	MPI	4800	1	736	1.67	713	1.72	715	1.71
718.tealeaf_m	MPI	4800	1	890	1.52	936	1.44	987	1.37	MPI	4400	1	713	1.89	739	1.83	693	1.95
719.clvleaf_m	MPI	4800	1	709	2.61	759	2.44	<u>718</u>	2.58	MPI	4400	1	662	2.79	<u>663</u>	<u>2.79</u>	665	2.78
728.pot3d_m	MPI	4800 1 1154 1.60 1208 1.53 1216 1.52 MPI 4400 1 912 2.03 898 2.06									<u>912</u>	<u>2.03</u>						
734.hpgmgfv_m	MPI	4800	1	518	1.93	<u>522</u>	<u>1.92</u>	522	1.92	MPI	4400	1	439	2.28	437	2.29	<u>438</u>	<u>2.28</u>
735.weather_m	MPI	4800	1	643	3.73	674	3.56	<u>674</u>	<u>3.56</u>	MPI	4800	1	642	3.74	647	3.71	<u>643</u>	<u>3.73</u>
		SPEChp	c 2021_med	_base =	2.00													
SPEChpc 2021_med_peak = 2.32																		
Results appear in the order in which they were run. Bold underlined text indicates a median measurement.																		

MPI Characteristics

Setup

 Frontera@TACC: 2xIntel Xeon Platinum 8280 (Cascade Lake)

- Intel Compiler, Intel MPI
- Pmodel: MPI-only
- Workload: small suite
 - #ranks: 224
 (4 nodes w/ 56 ranks/node)

Relevant MPI functions

- MPI_Allreduce (red) SOMA, Tealeaf, Cloverleaf, Pot3d, SPH-EXA
- P2P communication (yellow, green) Minisweep, SPH-EXA, Hpgmg
- MPI_Waitall (purple) Cloverleaf, Pot3d, Hpgmg, weather

Code Characteristics

- Instruction mix
 - Mix FP and non-FP ops
 - Mostly FP64-heavy codes (just SOMA some FP32 ops
 - Mostly high vectorization rate

Banahmank	FP32	FP64	Non-FP	Vectorization of FP
Dencimiark	(% of uOps)	(% of uOps)	(% of uOps)	(% of uOps)
605.1bm_s	0.00	51.98	48.02	86.80
613.soma_s	0.20	23.43	76.17	1.18
618.tealeaf_s	0.00	42.20	57.80	2.67
619.clvleaf_s	0.00	21.93	78.08	86.65
621.miniswp_s	0.00	8.92	91.07	57.90
628.pot3d_s	0.00	17.70	82.30	97.90
632.sph_exa_s	0.00	36.27	63.70	49.75
634.hpgmgfv_s	0.00	22.30	77.70	81.22
635.weather_s	0.00	26.32	73.67	3.45

Diversified Instructions similar for the tiny, medium and large suites.

Setup

- Frontera@TACC: 2xIntel Xeon Platinum 8280 (Cascade Lake)
- Intel Compiler, Intel MPI
- Pmodel: MPI-only
- Workload: small suite
- #ranks: 224
 - (4 nodes w/ 56 ranks/node)

Code Characteristics

Setup

 Frontera@TACC: 2xIntel Xeon Platinum 8280 (Cascade Lake)

- Intel Compiler, Intel MPI
- Pmodel: MPI-only
- Workload: small suite
- #ranks: 224 (4 nodes w/ 56 ranks/node)
- Roofline Models
 - Most applications are clearly memorybound
 - Tealeaf, Cloverleaf, Pot3d, Hpgmg, Weather
 - Some codes become less memory-bound with more nodes
 - Tealeaf, Weather
 - LBM: most compute-intensive code
 - Benefits most from vectorization

Roofline plots similar for the tiny, medium and large suites. Arithmetic intensity collected for entire duration of each code.

Scalability: CPUs

Setup

- Frontera@TACC:
- 2xIntel Xeon Platinum 8280 (Cascade Lake)
- Intel Compiler, Intel MPI
- Pmodel: MPI-only
- Scalability runs w/ all workloads (4 1024 nodes)
 - From a few nodes to a few hundreds
 - All suites scale well within their design limit

Scalability: GPUs

- Scalability runs on GPUs (ACC, TGT)
 - ACC and TGT scalability mostly good
 - ACC runtimes faster than TGT (except for Tealeaf)

Setup

Juwels Booster@JSC:

ParaStation MPI

4x NVIDIA A100 GPUs

• GCC compiler, NVHPC,

1 MPI rank per GPU

Workload: large suite

Scalability: Large GPU cluster

- Scalability runs on large GPU cluster
 - Poor scalability for 4,200 ranks and more
 - Need bigger problem sizes to meet Summit's scaling abilities
 - Future SPEC HPG work: weak-scaling benchmark suite

Setup

- Summit@ORNL: 6x NVIDIA V100 GPUs
- NVHPC
- 1 MPI rank per GPU
- Workload: large suite
- Pmodel: ACC

Summary

4 workloads: tiny, small, medium, large

4 pmodels: MPI, OMP, TGT, ACC

6-9 real-world applications

- Applications mostly memory-bound
- MPI_Allreduce plays a significant role in many applications
- Suites scale generally well within their design limits
 - Limitation: large accelerator-based clusters

Community Impact

- SPEChpc 2021 benchmark suite instrumental to
 - Identifying compiler implementation inconsistencies
 - Determining ambiguities in OpenMP specification
 - Identifying compiler/runtime bugs
 - Critical for ECP SOLLVE (Scaling OpenMP With LLVm for Exascale Performance and Portability) project
 - Identifying of non-performing HPC nodes in large clusters in universities and centers
 - Comparing/contrasting machines and procurement using SPEC scores
 - Building the next-generation workforce who learn to use large clusters, job scheduling, build roofline modeling, created scalability plots etc.,

How to get SPEChpc

• Licenses are free for non-commercial use by applying at:

https://www.spec.org/hpgdownload.html

• Commercial Licenses available, full information found at:

http://www.spec.org/hpc2021

Future Development

- SPEChpc Weak Scaling Suite (looking for codes now!)
- Refresh of SPEC ACCEL
- Want to help in the steering the direction of future benchmarks and be part of a great team?

Join SPEC HPG!

https://www.spec.org/spec/membership.html

Disclaimer & Attribution

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change. SPEC assumes no obligation to update or otherwise correct or revise this information. However, SPEC reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of SPEC to notify any person of such revisions or changes.

SPEC makes no representations or warranties with respect to the included contents and does not assume responsibility for any inaccuracies, errors, or omissions. In not event will SPEC be liable for any direct or indirect consequential damage from the use of any information contained herein, even if SPEC is expressly advised of the possibility of such damages.

© 2021 Standard Performance Evaluation Corporation (SPEC). All rights reserved. The SPEC logos and combinations thereof are trademarks of SPEC in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.