
Oracle Linux Toolchain Team

Oracle Linux Engineering and Virtualization

gprofng: The Next Generation GNU Profiling Tool

PPoPP Conference - BID Workshop

January 25, 2023

Ruud van der Pas, Vladimir Mezentsev, Kurt Goebel

• History and Status

• A Brief Overview of gprofng

• A Demo How to Make Your First Profile

• A Sneak Preview of the GUI

• Future Directions

• Q and A

Outline

2

• The Oracle Developer Studio Performance Analyzer was developed for 20+
years

- Many internal and external users with real-world applications

- Focus on the SPARC processor, Studio compilers, and Solaris operating system

- Support for x86 Linux for 10+ years

• This profiling tool served as a basis for gprofng

A Very Brief History of gprofng/1

3

The current gprofng project:

• Created a standalone version on Linux

• Adapted the source code to the GNU Coding Standards

• Adapted the build process to be compliant with other binutils components

• Added the port to Arm (aarch64)

• Fixed several bugs

• Completely redesigned the User Interface (UI)

• …

A Very Brief History of gprofng/2

4

August 11, 2021 - Submitted to binutils@sourceware.org for Review

5

March 9, 2022 - Approval to Merge into the Mainline!

6

…
Many thanks to our reviewers!

…

“I think this branch is ready

for merging into the mainline”

August 5, 2022 - GNU binutils 2.39 has been released!

7

“We are pleased to announce that version
2.39 of the GNU Binutils project sources
have been released and are now available
for download at:”

And … for the first time, gprofng was included!

8

The binutils Home Page:

https://www.gnu.org/software/binutils/

gprofng - Collects and displays application performance data.

Hyperlink to the gprofng Wiki

The gprofng Wiki on sourceware.org

9

Work in progress
Expanding rapidly

How to Get Your Copy

10

The binutils Home Page:

https://www.gnu.org/software/binutils/

Product: binutils

Component: gprofng

Also, working on getting approval for the

release of RPMs for OL8 and OL9

More Information on gprofng

11

https://blogs.oracle.com/linux/post/ 

gprofng-the-next-generation-gnu-profiling-tool

Gprofng - Collects and Displays Application Performance Data

12

• Languages supported: C, C++, Java, and Scala

• Full support for gcc compilers

• Fortran - full support for F77 and F95

- Limited testing with gfortran v12 and -std=f2018 looks encouraging, but TBD

• Currently supports various processors from Intel, AMD, and Arm

• No need to recompile the code

- Works with production binaries

• Supports Multithreading

• Posix Threads, OpenMP, and Java Threads

• A two step approach

- First, collect the performance data on the target executable

- Next, display the data

• Information is available at the function, source, and disassembly level

• Thanks to multiple views, already a single run can provide a lot of insight

• Scripting support to generate and customize profiles in an automated way

• Filters help to zoom in on the data

• Comparison of profiles is supported

How Does gprofng Work?

13

A Brief Comparison with gprof

14

gprof gprofng

Uses tracing/instrumentation Uses sampling

Requires a recompilation Can use existing/production executables

Limited support for modern features Support for shared libraries and multithreading

Limited customization Scripting commands supported

No support for filters Various filters supported

Cannot compare profiles Comparison of profiles is supported

No support for event counters Event counter support*

*) Fully functional, but limited support for very recent processors (work in progress)

Statistical Call Stack Sampling

15

01000110011
10101101100
01011110110
11001100011

11110101011
10010011011
00110101110
11001001101

10001110111
00110110011

00101110111
01011101011
11011011011

main

func1

func2

func3

1.The program is
stopped at
regular intervals

2.The Program Counter (PC) and
other information is recorded

3.An overview with the execution
times is produced

Function Time (s) Percentage

<Total> 18 100.0%

func2 10 55.6%

func1 5 27.8%

func3 2 11.1%

main 1 5.6%

The gprofng Command Structure

16

$ gprofng <functionality> [<qualifier>]

General syntax:

$ gprofng collect app

Examples:

$ gprofng display text

$ gprofng archive

[<options>]

my-experiment.er

-O my-experiment.er

my-experiment.er

An Overview of the Commands

17

Command Functionality

$ gprofng collect app Collect the performance data

$ gprofng display text Display the performance data in ASCII format

$ gprofng display html Generate html structure and view in a browser (currently x86_64 only)

$ gprofng display gui Launch the GUI (available soon)

$ gprofng archive Archive an experiment directory

$ gprofng display src Display the source and disassembly of an object file

This is an important concept in profiling tools

• The inclusive metric includes all callees underneath the caller

- For example, all the CPU time accumulated when executing a function

• The exclusive metric excludes everything outside the caller

- For example, the CPU time accumulated outside of calling other functions

Intermezzo - About Inclusive and Exclusive Metrics

18

Function
Inclusive

time
Exclusive

time

A 75 10

B 20 20

C 30 5

D 15 15

E 25 25

10

20

5

15

25

Scripting - Produce ASCII profiles in “batch mode”

• May be used for automated QA testing for example

Comparison of Profiles - Compare profiling data

• A really cool feature! And very useful too ;-)

• Comparison of profiles is supported at different levels

• Supported in text mode and through the GUI

The Timeline [GUI] - A color coded view of the run time behaviour

• Provides immediate insight into the dynamics

• For example, gaps in the execution

Three Very Cool Features

19

20

Getting started

Demo Time!

Comparison of Profiles - Generate the Data

21

$ gprofng collect app -O mxv.hwc.1.thr.er -h llm \
 ./mxv-pthreads -m 3000 -n 2000 -t 1
Creating experiment directory mxv.hwc.1.thr.er (Process ID: 23454) ...
mxv: error check passed - rows = 3000 columns = 2000 threads = 1

$ gprofng collect app -O mxv.hwc.2.thr.er -h llm \
./mxv-pthreads -m 3000 -n 2000 -t 2
Creating experiment directory mxv.hwc.2.thr.er (Process ID: 23462) ...
mxv: error check passed - rows = 3000 columns = 2000 threads = 2

Compare the Absolute Numbers

22

 mxv.hwc.comp.1.thr.er mxv.hwc.comp.2.thr.er
Name Excl. Last-Level Excl. Last-Level
 Cache Misses Cache Misses

 <Total> 122709276 96696878
 mxv_core 121796001 95793620
 init_data 723064 763104
 erand48_r 100111 50053
 drand48 60065 70077

$ gprofng display text -script comp1 mxv.hwc.*.thr.er

Limit the output to 5 lines
limit 5
Define the metrics
metrics name:e.llm
Show absolute numbers
compare on
functions

 mxv.hwc.comp.1.thr.er mxv.hwc.comp.2.thr.er
Name Excl. Last-Level Excl. Last-Level
 Cache Misses Cache Misses
 ratio
 <Total> 122709276 x 0.788
 mxv_core 121796001 x 0.787
 init_data 723064 x 1.055
 erand48_r 100111 x 0.500
 drand48 60065 x 1.167

Compare Ratios

23

$ gprofng display text -script comp2 mxv.hwc.*.thr.er

Limit the output to 5 lines
limit 5
Define the metrics
metrics name:e.llm
Show the ratio current/ref
compare ratio
functions

24

Generate HTML

gprofng display html

The “gprofng display html” command creates an HTML structure

25

Experiment Overview Function View

Source View Disassembly View

26

Sneak Preview

The gprofng GUI

The GUI Sneak Preview - The Timeline Operating System State

Color coded call
stacks for each

thread

Select point in time

and thread

Info for selected
thread

27

The gprofng GUI Sneak Preview - Some Views

28

Flame Graph Timeline

Zoom In Comparison

• Help users to get started

- Growing user base

• Support users analyzing performance

• Main priorities for development

- Expand and update the Wiki and other documentation

- Produce collaborative info for gprofng developers

- Make RPMs for gprofng available for the RH universe

◦ RPMs for Fedora (x86_64 and aarch64) on https://pkgs.org/download/gprofng

- Support for aarch64 in “gprofng display html”

- Support porting and distribution on other platforms

- Make the GUI (to graphically display and analyze the experiment data) available

◦ This will be a Savannah project

Future Directions/1

29

Other topics on the wish list

• Support for hardware event counters on more recent processors

• Provide additional metrics with call stack sampling

• Support remote analysis through a client-server set up

• Attach to a running process

• Further develop the “gprofng display html” functionality

• Write a porting guide (i.e. what does it take to port gprofng to other platforms)

• Investigate supporting AutoFDO

• …

Future Directions/2

30

Please send your feedback, or

if you’re interested to help,
to binutils@sourceware.org

31

Time for Q&A!

Thank You!

