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Introduction

▶ HPC is used to solve large complex problems in many domains
▶ Communication is one of the main bottlenecks in applications
▶ There has been a recent popularity of systems with accelerators

▶ The Message Passing Interface (MPI)
▶ Popular parallel programming model in HPC
▶ Provides multiple communication APIs

▶ Point-to-point
▶ Partitioned point-to-point
▶ RMA
▶ Collective Communication (MPI_Allreduce, MPI_Bcast, etc.)

▶ MPI based Deep Learning on HPC systems
▶ As the complexity of DL models grow we move towards using the aggregate

power of HPC systems
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Open MPI + UCX

▶ UCX provides abstract communication
primitives to best utilise hardware
▶ Point-to-point implemented upon RMA

Put/Get operations

▶ Open MPI is an open source MPI
implementation
▶ Point-to-point communication directly

relies on UCX for data transfers
▶ Collective communication are internally

built with point-to-point primitives

HPC and DL Applications

UCX
UCP UCT UCS

Open MPI
COLL PML UCX

Research Goals

▶ Improve the performance of GPU MPI communication for Deep Learning

▶ Obtain a better understanding of the MPI Partitioned Interface
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Benchmarking for MPI-Based
Deep Learning
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MPI-based Deep Learning

▶ Distributed Deep Learning using Horovod is
possible with models from:

▶ TensorFlow
▶ PyTorch
▶ MXNet

▶ Horovod uses the data-parallel training
method using MPI_Allreduce

▶ 17-83% of training time was spent in
MPI_Allreduce

▶ Up to 80% of runtime was spent in a GPU
based MPI_Allreduce
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Multi-Path Copy Motivation

▶ MPI sends data directly from GPU0 to GPU1
▶ Uses a zero copy put operation in UCX
▶ (As shown by the solid red line)

▶ Six idle NVLinks connected to the host
▶ A large amount of unused potential bandwidth

NVLink (25GB/s)

GPU0

CPU0

GPU1

Memory

Research Question
Can we design a mechanism to use all communication paths?
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Multi-Path Copy Motivation

▶ We used the ucx_perftest

micro-benchmarks to assess the
viability of our design idea

▶ Preliminary investigation showed:

▶ Stream count impacts peak
bandwidth for the host-path

▶ Stream count is dependent on
message size

▶ Up to 53GB/s of unused
bandwidth
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Hierarchical Allreduce with Multi-Path Copy

▶ The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and

reduce
3. Intra-socket multi-path broadcast

▶ Design Optimisations

▶ Steps 1-3 are pipelined
▶ Inter-socket communication

dynamically switches between
PCIe and NVLink

▶ Dynamically send data using
Multi-path or Peer-to-Peer copies
via the host links

▶ Minimise intra-socket congestion
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Experimental Setup

▶ Hardware:
▶ IBM AC922
▶ 32 Core, 128 Thread Power9 CPU
▶ 256GB RAM
▶ Four V100-SMX2-32GB

▶ Software:
▶ Open MPI 4.0.4rc2
▶ UCX 1.8.0
▶ Open MPI + HPC-X v2.7
▶ Spectrum-MPI 10.3.1
▶ MVAPICH2-GDR 2.3.5
▶ NCCL 2.5.6
▶ Horovod 0.20.3
▶ TensorFlow 1.15.2
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UCX Put and MPI Point-to-Point Results
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MPI_Allreduce OSU Microbenchmark Results
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MPI_Allreduce latency on 4 GPUs for very
large message sizes

▶ Much lower latency than Open MPI
+ HPC-X

▶ At 1GB we see speedup of:
▶ 1.47x over MVAPICH2-GDR
▶ 1.38x over NCCL
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Application Results

▶ ResNet50 up to 1.56x speedup

▶ Modifying fusion threshold increases message sizes to 128MB
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Benchmarking for MPI-Partitioned
Communication
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MPI Partitioned Point-to-Point Communication

▶ MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes

▶ Message matching occurs here
▶ MPI Partitioned does not accept wildcards

▶ MPI_Start is called to start communication
▶ A parallel for loop is launched

▶ Work is Computed
▶ Once data is ready, MPI_Pready is called
▶ Optionally, MPI_Parrived to check if

incoming data has arrived

▶ MPI_Waitall is called to complete
communication

▶ A good implementation does not have the
serialization issues of MPI Point-to-Point
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Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:

▶ How can we understand the behaviour and performance of MPI Partitioned?

▶ How could existing applications benefit from this new programming model?
▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26



Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:

▶ How can we understand the behaviour and performance of MPI Partitioned?

▶ How could existing applications benefit from this new programming model?
▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26



Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:

▶ How can we understand the behaviour and performance of MPI Partitioned?

▶ How could existing applications benefit from this new programming model?
▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26



Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:

▶ How can we understand the behaviour and performance of MPI Partitioned?

▶ How could existing applications benefit from this new programming model?
▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26



Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:
▶ How can we understand the behaviour and performance of MPI Partitioned?

▶ How could existing applications benefit from this new programming model?
▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26



Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:
▶ How can we understand the behaviour and performance of MPI Partitioned?
▶ How could existing applications benefit from this new programming model?

▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26



Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:
▶ How can we understand the behaviour and performance of MPI Partitioned?
▶ How could existing applications benefit from this new programming model?
▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26



Experiment Setup

▶ Niagara Supercomputer at SciNet1

▶ 2x 20 Core Intel Skylake at 2.4GHz
▶ EDR InfiniBand Network
▶ GNU/Linux - CentOS 7.6
▶ Open MPI (master branch)
▶ UCX v1.11.0
▶ MPIPCL

1SciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario;
Ontario Research Fund - Research Excellence; and the University of Toronto This research was
enabled in part by support provided by the Digital Research Alliance of Canada
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Overhead

▶ What is the cost of using MPI
Partitioned?

▶ We measure each individual data
transfer

▶ Compare it to MPI Point-to-Point

Overhead =
tpart

tpt2pt

T
hr

ea
ds

 F
or

k

Partitioned Send Timeline
Thread #1 Comp Thread #1 Data Transfer

Thread #2 Comp Thread #2 Data Transfer

Thread #3 Comp Thread #3 Data Transfer

Thread #4 Comp Thread #4 Data Transfer

Thread Join tpt2pt

T
hr

ea
ds

 F
or

k Thread #1 Comp

Thread #1 Data Transfer

Thread #2 Comp

Thread #2 Data Transfer

Thread #3 Comp

Thread #3 Data TransferThread #4 Comp Thread #4 Data Transfer

Traditional Send Timeline

tpart

PPRL / CEASER BID ‘23 17 / 26



Overhead

▶ What is the cost of using MPI
Partitioned?
▶ We measure each individual data

transfer
▶ Compare it to MPI Point-to-Point

Overhead =
tpart

tpt2pt

T
hr

ea
ds

 F
or

k

Partitioned Send Timeline
Thread #1 Comp Thread #1 Data Transfer

Thread #2 Comp Thread #2 Data Transfer

Thread #3 Comp Thread #3 Data Transfer

Thread #4 Comp Thread #4 Data Transfer

Thread Join tpt2pt

T
hr

ea
ds

 F
or

k Thread #1 Comp

Thread #1 Data Transfer

Thread #2 Comp

Thread #2 Data Transfer

Thread #3 Comp

Thread #3 Data TransferThread #4 Comp Thread #4 Data Transfer

Traditional Send Timeline

tpart

PPRL / CEASER BID ‘23 17 / 26



Overhead

▶ What is the cost of using MPI
Partitioned?
▶ We measure each individual data

transfer
▶ Compare it to MPI Point-to-Point

Overhead =
tpart

tpt2pt

T
hr

ea
ds

 F
or

k

Partitioned Send Timeline
Thread #1 Comp Thread #1 Data Transfer

Thread #2 Comp Thread #2 Data Transfer

Thread #3 Comp Thread #3 Data Transfer

Thread #4 Comp Thread #4 Data Transfer

Thread Join tpt2pt

T
hr

ea
ds

 F
or

k Thread #1 Comp

Thread #1 Data Transfer

Thread #2 Comp

Thread #2 Data Transfer

Thread #3 Comp

Thread #3 Data TransferThread #4 Comp Thread #4 Data Transfer

Traditional Send Timeline

tpart

PPRL / CEASER BID ‘23 17 / 26



Overhead Results

▶ Partition count correlates with overhead

▶ Overheads mostly impact small messages
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Perceived Bandwidth

▶ What would be the required
network bandwidth for MPI
Point-to-Point to perform the same
as MPI Partitioned?
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Perceived Bandwidth Results

▶ With 0% noise, we see our
traditional bandwidth curve

▶ Peak bandwidth is obtained
for medium sized messages

▶ Actual network bandwidth
is saturated for large
messages, thus perceived
bandwidth drops
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Perceived Bandwidth Results

▶ With 0% noise, we see our
traditional bandwidth curve

▶ Peak bandwidth is obtained
for medium sized messages

▶ Actual network bandwidth
is saturated for large
messages, thus perceived
bandwidth drops
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Sweep3D Communication Pattern

▶ Sweep3D communication pattern
has lots of dependencies

▶ Generally, multi-threading performs
better than single threaded

▶ The MPI Partition implementation
used in this work is built upon MPI
Send/Recv
▶ Therefore minimal difference for

most message sizes

▶ Up to 15.1x higher throughput for
large message sizes
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Potential Application Improvements

▶ The Sweep3D communication
pattern showed potential for if it
were ported to MPI Partitioned

▶ SNAP uses a Sweep3D
communication
▶ We profiled SNAP’s

communication
▶ Projected the potential speedup
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Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning

▶ Deep Learning workloads use MPI_Allreduce collective with large messages
extensively

▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication

▶ We provide the first MPI Partitioned Micro-Benchmark Suite

▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work

▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives
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Thank You!
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