
Benchmarking MPI for Deep Learning and HPC Workloads

Yıltan Hassan Temuçin

Parallel Processing Research Laboratory (PPRL)
Computing At Extreme Scale Advanced Research Laboratory (CEASER)

Department of Electrical and Computer Engineering
Queen’s University, Canada

Benchmarking in the Data Center: Expanding to the Cloud
Febuary 25th 2023

Outline

Introduction
Open MPI + UCX

Benchmarking for MPI-Based Deep Learning
RMA and Collective Communication Design
Micro-Benchmarks
Application Results

Benchmarking for MPI-Partitioned Communication
MPI Partitioned Point-to-Point Communication
Overhead
Perceived Bandwidth
Sweep3D Communication Pattern

Conclusion And Future Work

PPRL / CEASER BID ‘23 1 / 26

Introduction

▶ HPC is used to solve large complex problems in many domains
▶ Communication is one of the main bottlenecks in applications
▶ There has been a recent popularity of systems with accelerators

▶ The Message Passing Interface (MPI)
▶ Popular parallel programming model in HPC
▶ Provides multiple communication APIs

▶ Point-to-point
▶ Partitioned point-to-point
▶ RMA
▶ Collective Communication (MPI_Allreduce, MPI_Bcast, etc.)

▶ MPI based Deep Learning on HPC systems
▶ As the complexity of DL models grow we move towards using the aggregate

power of HPC systems

PPRL / CEASER BID ‘23 2 / 26

Introduction

▶ HPC is used to solve large complex problems in many domains
▶ Communication is one of the main bottlenecks in applications
▶ There has been a recent popularity of systems with accelerators

▶ The Message Passing Interface (MPI)
▶ Popular parallel programming model in HPC
▶ Provides multiple communication APIs

▶ Point-to-point
▶ Partitioned point-to-point
▶ RMA
▶ Collective Communication (MPI_Allreduce, MPI_Bcast, etc.)

▶ MPI based Deep Learning on HPC systems
▶ As the complexity of DL models grow we move towards using the aggregate

power of HPC systems

PPRL / CEASER BID ‘23 2 / 26

Introduction

▶ HPC is used to solve large complex problems in many domains
▶ Communication is one of the main bottlenecks in applications
▶ There has been a recent popularity of systems with accelerators

▶ The Message Passing Interface (MPI)
▶ Popular parallel programming model in HPC
▶ Provides multiple communication APIs

▶ Point-to-point
▶ Partitioned point-to-point
▶ RMA
▶ Collective Communication (MPI_Allreduce, MPI_Bcast, etc.)

▶ MPI based Deep Learning on HPC systems
▶ As the complexity of DL models grow we move towards using the aggregate

power of HPC systems

PPRL / CEASER BID ‘23 2 / 26

Open MPI + UCX

▶ UCX provides abstract communication
primitives to best utilise hardware
▶ Point-to-point implemented upon RMA

Put/Get operations

▶ Open MPI is an open source MPI
implementation
▶ Point-to-point communication directly

relies on UCX for data transfers
▶ Collective communication are internally

built with point-to-point primitives

HPC and DL Applications

UCX
UCP UCT UCS

Open MPI
COLL PML UCX

Research Goals

▶ Improve the performance of GPU MPI communication for Deep Learning

▶ Obtain a better understanding of the MPI Partitioned Interface

PPRL / CEASER BID ‘23 3 / 26

Open MPI + UCX

▶ UCX provides abstract communication
primitives to best utilise hardware
▶ Point-to-point implemented upon RMA

Put/Get operations
▶ Open MPI is an open source MPI

implementation
▶ Point-to-point communication directly

relies on UCX for data transfers
▶ Collective communication are internally

built with point-to-point primitives

HPC and DL Applications

UCX
UCP UCT UCS

Open MPI
COLL PML UCX

Research Goals

▶ Improve the performance of GPU MPI communication for Deep Learning

▶ Obtain a better understanding of the MPI Partitioned Interface

PPRL / CEASER BID ‘23 3 / 26

Open MPI + UCX

▶ UCX provides abstract communication
primitives to best utilise hardware
▶ Point-to-point implemented upon RMA

Put/Get operations
▶ Open MPI is an open source MPI

implementation
▶ Point-to-point communication directly

relies on UCX for data transfers
▶ Collective communication are internally

built with point-to-point primitives

HPC and DL Applications

UCX
UCP UCT UCS

Open MPI
COLL PML UCX

Research Goals

▶ Improve the performance of GPU MPI communication for Deep Learning

▶ Obtain a better understanding of the MPI Partitioned Interface

PPRL / CEASER BID ‘23 3 / 26

Benchmarking for MPI-Based
Deep Learning

PPRL / CEASER BID ‘23 4 / 26

MPI-based Deep Learning

▶ Distributed Deep Learning using Horovod is
possible with models from:

▶ TensorFlow
▶ PyTorch
▶ MXNet

▶ Horovod uses the data-parallel training
method using MPI_Allreduce

▶ 17-83% of training time was spent in
MPI_Allreduce

▶ Up to 80% of runtime was spent in a GPU
based MPI_Allreduce

Re
sN

et
50

Re
sN

et
10

1

Re
sN

et
15

2

De
ns

eN
et

12
1

De
ns

eN
et

16
9

De
ns

eN
et

20
1

M
ob

ile
Ne

t

M
ob

ile
Ne

tV
2

VG
G1

6

VG
G1

9

Xc
ep

tio
n

Model

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f R
un

-ti
m

e

MPI_Allreduce (CPU)
MPI_Allreduce (GPU)
Other

Impact of MPI_Allreduce on a
single IBM AC922 node

PPRL / CEASER BID ‘23 5 / 26

MPI-based Deep Learning

▶ Distributed Deep Learning using Horovod is
possible with models from:
▶ TensorFlow
▶ PyTorch
▶ MXNet

▶ Horovod uses the data-parallel training
method using MPI_Allreduce

▶ 17-83% of training time was spent in
MPI_Allreduce

▶ Up to 80% of runtime was spent in a GPU
based MPI_Allreduce

Re
sN

et
50

Re
sN

et
10

1

Re
sN

et
15

2

De
ns

eN
et

12
1

De
ns

eN
et

16
9

De
ns

eN
et

20
1

M
ob

ile
Ne

t

M
ob

ile
Ne

tV
2

VG
G1

6

VG
G1

9

Xc
ep

tio
n

Model

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f R
un

-ti
m

e

MPI_Allreduce (CPU)
MPI_Allreduce (GPU)
Other

Impact of MPI_Allreduce on a
single IBM AC922 node

PPRL / CEASER BID ‘23 5 / 26

MPI-based Deep Learning

▶ Distributed Deep Learning using Horovod is
possible with models from:
▶ TensorFlow
▶ PyTorch
▶ MXNet

▶ Horovod uses the data-parallel training
method using MPI_Allreduce

▶ 17-83% of training time was spent in
MPI_Allreduce

▶ Up to 80% of runtime was spent in a GPU
based MPI_Allreduce

Re
sN

et
50

Re
sN

et
10

1

Re
sN

et
15

2

De
ns

eN
et

12
1

De
ns

eN
et

16
9

De
ns

eN
et

20
1

M
ob

ile
Ne

t

M
ob

ile
Ne

tV
2

VG
G1

6

VG
G1

9

Xc
ep

tio
n

Model

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f R
un

-ti
m

e

MPI_Allreduce (CPU)
MPI_Allreduce (GPU)
Other

Impact of MPI_Allreduce on a
single IBM AC922 node

PPRL / CEASER BID ‘23 5 / 26

MPI-based Deep Learning

▶ Distributed Deep Learning using Horovod is
possible with models from:
▶ TensorFlow
▶ PyTorch
▶ MXNet

▶ Horovod uses the data-parallel training
method using MPI_Allreduce

▶ 17-83% of training time was spent in
MPI_Allreduce

▶ Up to 80% of runtime was spent in a GPU
based MPI_Allreduce

Re
sN

et
50

Re
sN

et
10

1

Re
sN

et
15

2

De
ns

eN
et

12
1

De
ns

eN
et

16
9

De
ns

eN
et

20
1

M
ob

ile
Ne

t

M
ob

ile
Ne

tV
2

VG
G1

6

VG
G1

9

Xc
ep

tio
n

Model

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f R
un

-ti
m

e

MPI_Allreduce (CPU)
MPI_Allreduce (GPU)
Other

Impact of MPI_Allreduce on a
single IBM AC922 node

PPRL / CEASER BID ‘23 5 / 26

MPI-based Deep Learning

▶ Distributed Deep Learning using Horovod is
possible with models from:
▶ TensorFlow
▶ PyTorch
▶ MXNet

▶ Horovod uses the data-parallel training
method using MPI_Allreduce

▶ 17-83% of training time was spent in
MPI_Allreduce

▶ Up to 80% of runtime was spent in a GPU
based MPI_Allreduce

Re
sN

et
50

Re
sN

et
10

1

Re
sN

et
15

2

De
ns

eN
et

12
1

De
ns

eN
et

16
9

De
ns

eN
et

20
1

M
ob

ile
Ne

t

M
ob

ile
Ne

tV
2

VG
G1

6

VG
G1

9

Xc
ep

tio
n

Model

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f R
un

-ti
m

e

MPI_Allreduce (CPU)
MPI_Allreduce (GPU)
Other

Impact of MPI_Allreduce on a
single IBM AC922 node

PPRL / CEASER BID ‘23 5 / 26

Multi-Path Copy Motivation

▶ MPI sends data directly from GPU0 to GPU1
▶ Uses a zero copy put operation in UCX
▶ (As shown by the solid red line)

▶ Six idle NVLinks connected to the host
▶ A large amount of unused potential bandwidth

NVLink (25GB/s)

GPU0

CPU0

GPU1

Memory

Research Question
Can we design a mechanism to use all communication paths?

PPRL / CEASER BID ‘23 6 / 26

Multi-Path Copy Motivation

▶ MPI sends data directly from GPU0 to GPU1
▶ Uses a zero copy put operation in UCX
▶ (As shown by the solid red line)

▶ Six idle NVLinks connected to the host

▶ A large amount of unused potential bandwidth

NVLink (25GB/s)

GPU0

CPU0

GPU1

Memory

Research Question
Can we design a mechanism to use all communication paths?

PPRL / CEASER BID ‘23 6 / 26

Multi-Path Copy Motivation

▶ MPI sends data directly from GPU0 to GPU1
▶ Uses a zero copy put operation in UCX
▶ (As shown by the solid red line)

▶ Six idle NVLinks connected to the host
▶ A large amount of unused potential bandwidth

NVLink (25GB/s)

GPU0

CPU0

GPU1

Memory

Research Question
Can we design a mechanism to use all communication paths?

PPRL / CEASER BID ‘23 6 / 26

Multi-Path Copy Motivation

▶ MPI sends data directly from GPU0 to GPU1
▶ Uses a zero copy put operation in UCX
▶ (As shown by the solid red line)

▶ Six idle NVLinks connected to the host
▶ A large amount of unused potential bandwidth

NVLink (25GB/s)

GPU0

CPU0

GPU1

Memory

Research Question
Can we design a mechanism to use all communication paths?

PPRL / CEASER BID ‘23 6 / 26

Multi-Path Copy Motivation

▶ We used the ucx_perftest

micro-benchmarks to assess the
viability of our design idea

▶ Preliminary investigation showed:

▶ Stream count impacts peak
bandwidth for the host-path

▶ Stream count is dependent on
message size

▶ Up to 53GB/s of unused
bandwidth

1K 2K 4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M
128M

256M
512M

1G

Message Size (B)

0

10000

20000

30000

40000

50000

60000

70000

Ba
nd

wi
dt

h
(M

B/
s)

Default (P2P)
Host Staged Copy (1 streams)
Host Staged Copy (2 streams)
Host Staged Copy (4 streams)
Host Staged Copy (8 streams)

PPRL / CEASER BID ‘23 7 / 26

Multi-Path Copy Motivation

▶ We used the ucx_perftest

micro-benchmarks to assess the
viability of our design idea

▶ Preliminary investigation showed:

▶ Stream count impacts peak
bandwidth for the host-path

▶ Stream count is dependent on
message size

▶ Up to 53GB/s of unused
bandwidth

1K 2K 4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M
128M

256M
512M

1G

Message Size (B)

0

10000

20000

30000

40000

50000

60000

70000

Ba
nd

wi
dt

h
(M

B/
s)

Default (P2P)
Host Staged Copy (1 streams)
Host Staged Copy (2 streams)
Host Staged Copy (4 streams)
Host Staged Copy (8 streams)

PPRL / CEASER BID ‘23 7 / 26

Multi-Path Copy Motivation

▶ We used the ucx_perftest

micro-benchmarks to assess the
viability of our design idea

▶ Preliminary investigation showed:
▶ Stream count impacts peak

bandwidth for the host-path

▶ Stream count is dependent on
message size

▶ Up to 53GB/s of unused
bandwidth

1K 2K 4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M
128M

256M
512M

1G

Message Size (B)

0

10000

20000

30000

40000

50000

60000

70000

Ba
nd

wi
dt

h
(M

B/
s)

Default (P2P)
Host Staged Copy (1 streams)
Host Staged Copy (2 streams)
Host Staged Copy (4 streams)
Host Staged Copy (8 streams)

PPRL / CEASER BID ‘23 7 / 26

Multi-Path Copy Motivation

▶ We used the ucx_perftest

micro-benchmarks to assess the
viability of our design idea

▶ Preliminary investigation showed:
▶ Stream count impacts peak

bandwidth for the host-path
▶ Stream count is dependent on

message size

▶ Up to 53GB/s of unused
bandwidth

1K 2K 4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M
128M

256M
512M

1G

Message Size (B)

0

10000

20000

30000

40000

50000

60000

70000

Ba
nd

wi
dt

h
(M

B/
s)

Default (P2P)
Host Staged Copy (1 streams)
Host Staged Copy (2 streams)
Host Staged Copy (4 streams)
Host Staged Copy (8 streams)

PPRL / CEASER BID ‘23 7 / 26

Multi-Path Copy Motivation

▶ We used the ucx_perftest

micro-benchmarks to assess the
viability of our design idea

▶ Preliminary investigation showed:
▶ Stream count impacts peak

bandwidth for the host-path
▶ Stream count is dependent on

message size
▶ Up to 53GB/s of unused

bandwidth
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M 2M 4M 8M 16M

32M
64M

128M
256M

512M
1G

Message Size (B)

0

10000

20000

30000

40000

50000

60000

70000

Ba
nd

wi
dt

h
(M

B/
s)

Default (P2P)
Host Staged Copy (1 streams)
Host Staged Copy (2 streams)
Host Staged Copy (4 streams)
Host Staged Copy (8 streams)

PPRL / CEASER BID ‘23 7 / 26

Hierarchical Allreduce with Multi-Path Copy

▶ The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and

reduce
3. Intra-socket multi-path broadcast

▶ Design Optimisations

▶ Steps 1-3 are pipelined
▶ Inter-socket communication

dynamically switches between
PCIe and NVLink

▶ Dynamically send data using
Multi-path or Peer-to-Peer copies
via the host links

▶ Minimise intra-socket congestion

NVLink (25GB/s) X-Bus (32GB/s)
PCIe Gen4 (32GB/s)

Memory

G
P
U

0

G
P
U

1

CPU0

G
P
U

2

G
P
U

3

CPU1

Memory

PPRL / CEASER BID ‘23 8 / 26

Hierarchical Allreduce with Multi-Path Copy

▶ The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce

2. Inter-socket leaders exchange and
reduce

3. Intra-socket multi-path broadcast
▶ Design Optimisations

▶ Steps 1-3 are pipelined
▶ Inter-socket communication

dynamically switches between
PCIe and NVLink

▶ Dynamically send data using
Multi-path or Peer-to-Peer copies
via the host links

▶ Minimise intra-socket congestion

NVLink (25GB/s) X-Bus (32GB/s)
PCIe Gen4 (32GB/s)

Memory

G
P
U

0

G
P
U

1

CPU0

G
P
U

2

G
P
U

3

CPU1

Memory

1 1

PPRL / CEASER BID ‘23 8 / 26

Hierarchical Allreduce with Multi-Path Copy

▶ The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and

reduce

3. Intra-socket multi-path broadcast
▶ Design Optimisations

▶ Steps 1-3 are pipelined
▶ Inter-socket communication

dynamically switches between
PCIe and NVLink

▶ Dynamically send data using
Multi-path or Peer-to-Peer copies
via the host links

▶ Minimise intra-socket congestion

NVLink (25GB/s) X-Bus (32GB/s)
PCIe Gen4 (32GB/s)

Memory

G
P
U

0

G
P
U

1

CPU0

G
P
U

2

G
P
U

3

CPU1

Memory

2

PPRL / CEASER BID ‘23 8 / 26

Hierarchical Allreduce with Multi-Path Copy

▶ The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and

reduce
3. Intra-socket multi-path broadcast

▶ Design Optimisations

▶ Steps 1-3 are pipelined
▶ Inter-socket communication

dynamically switches between
PCIe and NVLink

▶ Dynamically send data using
Multi-path or Peer-to-Peer copies
via the host links

▶ Minimise intra-socket congestion

NVLink (25GB/s) X-Bus (32GB/s)
PCIe Gen4 (32GB/s)

Memory

G
P
U

0

G
P
U

1

CPU0

G
P
U

2

G
P
U

3

CPU1

Memory

3 3

PPRL / CEASER BID ‘23 8 / 26

Hierarchical Allreduce with Multi-Path Copy

▶ The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and

reduce
3. Intra-socket multi-path broadcast

▶ Design Optimisations

▶ Steps 1-3 are pipelined
▶ Inter-socket communication

dynamically switches between
PCIe and NVLink

▶ Dynamically send data using
Multi-path or Peer-to-Peer copies
via the host links

▶ Minimise intra-socket congestion

NVLink (25GB/s) X-Bus (32GB/s)
PCIe Gen4 (32GB/s)

Memory

G
P
U

0

G
P
U

1

CPU0

G
P
U

2

G
P
U

3

CPU1

Memory

1

3

2

3

1

PPRL / CEASER BID ‘23 8 / 26

Hierarchical Allreduce with Multi-Path Copy

▶ The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and

reduce
3. Intra-socket multi-path broadcast

▶ Design Optimisations
▶ Steps 1-3 are pipelined

▶ Inter-socket communication
dynamically switches between
PCIe and NVLink

▶ Dynamically send data using
Multi-path or Peer-to-Peer copies
via the host links

▶ Minimise intra-socket congestion

NVLink (25GB/s) X-Bus (32GB/s)
PCIe Gen4 (32GB/s)

Memory

G
P
U

0

G
P
U

1

CPU0

G
P
U

2

G
P
U

3

CPU1

Memory

1

3

2

3

1

PPRL / CEASER BID ‘23 8 / 26

Hierarchical Allreduce with Multi-Path Copy

▶ The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and

reduce
3. Intra-socket multi-path broadcast

▶ Design Optimisations
▶ Steps 1-3 are pipelined
▶ Inter-socket communication

dynamically switches between
PCIe and NVLink

▶ Dynamically send data using
Multi-path or Peer-to-Peer copies
via the host links

▶ Minimise intra-socket congestion

NVLink (25GB/s) X-Bus (32GB/s)
PCIe Gen4 (32GB/s)

Memory

G
P
U

0

G
P
U

1

CPU0

G
P
U

2

G
P
U

3

CPU1

Memory

1

3

2

3

1

PPRL / CEASER BID ‘23 8 / 26

Hierarchical Allreduce with Multi-Path Copy

▶ The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and

reduce
3. Intra-socket multi-path broadcast

▶ Design Optimisations
▶ Steps 1-3 are pipelined
▶ Inter-socket communication

dynamically switches between
PCIe and NVLink

▶ Dynamically send data using
Multi-path or Peer-to-Peer copies
via the host links

▶ Minimise intra-socket congestion

NVLink (25GB/s) X-Bus (32GB/s)
PCIe Gen4 (32GB/s)

Memory

G
P
U

0

G
P
U

1

CPU0

G
P
U

2

G
P
U

3

CPU1

Memory

1

3

2

3

1

PPRL / CEASER BID ‘23 8 / 26

Hierarchical Allreduce with Multi-Path Copy

▶ The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and

reduce
3. Intra-socket multi-path broadcast

▶ Design Optimisations
▶ Steps 1-3 are pipelined
▶ Inter-socket communication

dynamically switches between
PCIe and NVLink

▶ Dynamically send data using
Multi-path or Peer-to-Peer copies
via the host links
▶ Minimise intra-socket congestion

NVLink (25GB/s) X-Bus (32GB/s)
PCIe Gen4 (32GB/s)

Memory

G
P
U

0

G
P
U

1

CPU0

G
P
U

2

G
P
U

3

CPU1

Memory

1

3

2

3

1

PPRL / CEASER BID ‘23 8 / 26

Experimental Setup

▶ Hardware:
▶ IBM AC922
▶ 32 Core, 128 Thread Power9 CPU
▶ 256GB RAM
▶ Four V100-SMX2-32GB

▶ Software:
▶ Open MPI 4.0.4rc2
▶ UCX 1.8.0
▶ Open MPI + HPC-X v2.7
▶ Spectrum-MPI 10.3.1
▶ MVAPICH2-GDR 2.3.5
▶ NCCL 2.5.6
▶ Horovod 0.20.3
▶ TensorFlow 1.15.2

PPRL / CEASER BID ‘23 9 / 26

Experimental Setup

▶ Hardware:
▶ IBM AC922
▶ 32 Core, 128 Thread Power9 CPU
▶ 256GB RAM
▶ Four V100-SMX2-32GB

▶ Software:
▶ Open MPI 4.0.4rc2
▶ UCX 1.8.0
▶ Open MPI + HPC-X v2.7
▶ Spectrum-MPI 10.3.1
▶ MVAPICH2-GDR 2.3.5
▶ NCCL 2.5.6
▶ Horovod 0.20.3
▶ TensorFlow 1.15.2

PPRL / CEASER BID ‘23 9 / 26

UCX Put and MPI Point-to-Point Results

1K 2K 4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M
128M

256M
512M

1G

Message Size (B)

0

20000

40000

60000

80000

100000

120000

Ba
nd

wi
dt

h
(M

B/
s)

UCX
UCX + Multi-Path Copy

UCX Put Bandwidth

1K 2K 4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M
128M

256M
512M

1G

Message Size (B)

0

20000

40000

60000

80000

100000

120000

140000

Ba
nd

wi
dt

h
(M

B/
s)

Spectrum MPI
Open MPI + UCX
Open MPI + UCX + Multi-Path Copy
MVAPICH2-GDR

MPI Unidirectional Bandwidth

PPRL / CEASER BID ‘23 10 / 26

UCX Put and MPI Point-to-Point Results

1.67x

UCX Put Bandwidth

1K 2K 4K 8K 16K
32K

64K
128K

256K
512K

1M 2M 4M 8M 16M
32M

64M
128M

256M
512M

1G

Message Size (B)

0

20000

40000

60000

80000

100000

120000

140000

Ba
nd

wi
dt

h
(M

B/
s)

Spectrum MPI
Open MPI + UCX
Open MPI + UCX + Multi-Path Copy
MVAPICH2-GDR

MPI Unidirectional Bandwidth

PPRL / CEASER BID ‘23 10 / 26

UCX Put and MPI Point-to-Point Results

1.67x

UCX Put Bandwidth

1.84x

MPI Unidirectional Bandwidth

PPRL / CEASER BID ‘23 10 / 26

MPI_Allreduce OSU Microbenchmark Results

128M
256M

512M
1G

Message Size (B)

104

105

106

la
te

nc
y

(u
s)

Spectrum MPI
Open MPI + UCX
Open MPI + HPC-X
MVAPICH2-GDR
NCCL
Allreduce with GPU Kernel Reduction
Hierarchical Allreduce with Multi-Path Copy

MPI_Allreduce latency on 4 GPUs for very
large message sizes

▶ Much lower latency than Open MPI
+ HPC-X

▶ At 1GB we see speedup of:
▶ 1.47x over MVAPICH2-GDR
▶ 1.38x over NCCL

PPRL / CEASER BID ‘23 11 / 26

MPI_Allreduce OSU Microbenchmark Results

128M
256M

512M
1G

Message Size (B)

104

105

106

la
te

nc
y

(u
s)

Spectrum MPI
Open MPI + UCX
Open MPI + HPC-X
MVAPICH2-GDR
NCCL
Allreduce with GPU Kernel Reduction
Hierarchical Allreduce with Multi-Path Copy

MPI_Allreduce latency on 4 GPUs for very
large message sizes

▶ Much lower latency than Open MPI
+ HPC-X

▶ At 1GB we see speedup of:
▶ 1.47x over MVAPICH2-GDR
▶ 1.38x over NCCL

PPRL / CEASER BID ‘23 11 / 26

MPI_Allreduce OSU Microbenchmark Results

128M
256M

512M
1G

Message Size (B)

104

105

106

la
te

nc
y

(u
s)

Spectrum MPI
Open MPI + UCX
Open MPI + HPC-X
MVAPICH2-GDR
NCCL
Allreduce with GPU Kernel Reduction
Hierarchical Allreduce with Multi-Path Copy

MPI_Allreduce latency on 4 GPUs for very
large message sizes

▶ Much lower latency than Open MPI
+ HPC-X

▶ At 1GB we see speedup of:

▶ 1.47x over MVAPICH2-GDR
▶ 1.38x over NCCL

PPRL / CEASER BID ‘23 11 / 26

MPI_Allreduce OSU Microbenchmark Results

128M
256M

512M
1G

Message Size (B)

104

105

106

la
te

nc
y

(u
s)

Spectrum MPI
Open MPI + UCX
Open MPI + HPC-X
MVAPICH2-GDR
NCCL
Allreduce with GPU Kernel Reduction
Hierarchical Allreduce with Multi-Path Copy

MPI_Allreduce latency on 4 GPUs for very
large message sizes

▶ Much lower latency than Open MPI
+ HPC-X

▶ At 1GB we see speedup of:
▶ 1.47x over MVAPICH2-GDR
▶ 1.38x over NCCL

PPRL / CEASER BID ‘23 11 / 26

Application Results

▶ ResNet50 up to 1.56x speedup

▶ Modifying fusion threshold increases message sizes to 128MB

64MB 128MB 256MB 512MB 1GB
HOROVOD_FUSION_THRESHOLD

0

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (i

m
g/

se
c)

Spectrum MPI
Open MPI + UCX
Open MPI + HPC-X
MVAPICH2-GDR
NCCL
Allreduce with GPU Kernel Reduction
Hierarchical Allreduce with Multi-Path Copy

Synthetic Horovod + TensorFlow
benchmarks for ResNet50

64KB
128KB

256KB
512KB

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB
512MB

1GB
2GB

MPI_Allreduce GPU Message Sizes

0

20

40

60

80

100

Fr
eq

ue
nc

y

Fusion Threashold
64MB
128MB
256MB
512MB
1GB

GPU Message Sizes for different
HOROVOD_FUSION_THREASHOLD

PPRL / CEASER BID ‘23 12 / 26

Application Results

▶ ResNet50 up to 1.56x speedup
▶ Modifying fusion threshold increases message sizes to 128MB

64MB 128MB 256MB 512MB 1GB
HOROVOD_FUSION_THRESHOLD

0

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (i

m
g/

se
c)

Spectrum MPI
Open MPI + UCX
Open MPI + HPC-X
MVAPICH2-GDR
NCCL
Allreduce with GPU Kernel Reduction
Hierarchical Allreduce with Multi-Path Copy

Synthetic Horovod + TensorFlow
benchmarks for ResNet50

64KB
128KB

256KB
512KB

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB
512MB

1GB
2GB

MPI_Allreduce GPU Message Sizes

0

20

40

60

80

100

Fr
eq

ue
nc

y

Fusion Threashold
64MB
128MB
256MB
512MB
1GB

GPU Message Sizes for different
HOROVOD_FUSION_THREASHOLD

PPRL / CEASER BID ‘23 12 / 26

Benchmarking for MPI-Partitioned
Communication

PPRL / CEASER BID ‘23 13 / 26

MPI Partitioned Point-to-Point Communication

▶ MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes

▶ Message matching occurs here
▶ MPI Partitioned does not accept wildcards

▶ MPI_Start is called to start communication
▶ A parallel for loop is launched

▶ Work is Computed
▶ Once data is ready, MPI_Pready is called
▶ Optionally, MPI_Parrived to check if

incoming data has arrived

▶ MPI_Waitall is called to complete
communication

▶ A good implementation does not have the
serialization issues of MPI Point-to-Point

MPI_Start

MPI_Psend_init

MPI_Pready

MPI_Pready

MPI_Pready

MPI_Wait

MPI_Start

MPI_Precv_init

MPI_Wait

MPI_Parrived

MPI_Parrived

MPI_Parrived

P0 P1

PPRL / CEASER BID ‘23 14 / 26

MPI Partitioned Point-to-Point Communication

▶ MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
▶ Message matching occurs here
▶ MPI Partitioned does not accept wildcards

▶ MPI_Start is called to start communication
▶ A parallel for loop is launched

▶ Work is Computed
▶ Once data is ready, MPI_Pready is called
▶ Optionally, MPI_Parrived to check if

incoming data has arrived

▶ MPI_Waitall is called to complete
communication

▶ A good implementation does not have the
serialization issues of MPI Point-to-Point

MPI_Start

MPI_Psend_init

MPI_Pready

MPI_Pready

MPI_Pready

MPI_Wait

MPI_Start

MPI_Precv_init

MPI_Wait

MPI_Parrived

MPI_Parrived

MPI_Parrived

P0 P1

PPRL / CEASER BID ‘23 14 / 26

MPI Partitioned Point-to-Point Communication

▶ MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
▶ Message matching occurs here
▶ MPI Partitioned does not accept wildcards

▶ MPI_Start is called to start communication

▶ A parallel for loop is launched

▶ Work is Computed
▶ Once data is ready, MPI_Pready is called
▶ Optionally, MPI_Parrived to check if

incoming data has arrived

▶ MPI_Waitall is called to complete
communication

▶ A good implementation does not have the
serialization issues of MPI Point-to-Point

MPI_Start

MPI_Psend_init

MPI_Pready

MPI_Pready

MPI_Pready

MPI_Wait

MPI_Start

MPI_Precv_init

MPI_Wait

MPI_Parrived

MPI_Parrived

MPI_Parrived

P0 P1

PPRL / CEASER BID ‘23 14 / 26

MPI Partitioned Point-to-Point Communication

▶ MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
▶ Message matching occurs here
▶ MPI Partitioned does not accept wildcards

▶ MPI_Start is called to start communication
▶ A parallel for loop is launched

▶ Work is Computed
▶ Once data is ready, MPI_Pready is called
▶ Optionally, MPI_Parrived to check if

incoming data has arrived

▶ MPI_Waitall is called to complete
communication

▶ A good implementation does not have the
serialization issues of MPI Point-to-Point

MPI_Start

MPI_Psend_init

MPI_Pready

MPI_Pready

MPI_Pready

MPI_Wait

MPI_Start

MPI_Precv_init

MPI_Wait

MPI_Parrived

MPI_Parrived

MPI_Parrived

P0 P1

PPRL / CEASER BID ‘23 14 / 26

MPI Partitioned Point-to-Point Communication

▶ MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
▶ Message matching occurs here
▶ MPI Partitioned does not accept wildcards

▶ MPI_Start is called to start communication
▶ A parallel for loop is launched

▶ Work is Computed
▶ Once data is ready, MPI_Pready is called
▶ Optionally, MPI_Parrived to check if

incoming data has arrived

▶ MPI_Waitall is called to complete
communication

▶ A good implementation does not have the
serialization issues of MPI Point-to-Point

MPI_Start

MPI_Psend_init

MPI_Pready

MPI_Pready

MPI_Pready

MPI_Wait

MPI_Start

MPI_Precv_init

MPI_Wait

MPI_Parrived

MPI_Parrived

MPI_Parrived

P0 P1

PPRL / CEASER BID ‘23 14 / 26

MPI Partitioned Point-to-Point Communication

▶ MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
▶ Message matching occurs here
▶ MPI Partitioned does not accept wildcards

▶ MPI_Start is called to start communication
▶ A parallel for loop is launched

▶ Work is Computed
▶ Once data is ready, MPI_Pready is called
▶ Optionally, MPI_Parrived to check if

incoming data has arrived

▶ MPI_Waitall is called to complete
communication

▶ A good implementation does not have the
serialization issues of MPI Point-to-Point

MPI_Start

MPI_Psend_init

MPI_Pready

MPI_Pready

MPI_Pready

MPI_Wait

MPI_Start

MPI_Precv_init

MPI_Wait

MPI_Parrived

MPI_Parrived

MPI_Parrived

P0 P1

PPRL / CEASER BID ‘23 14 / 26

MPI Partitioned Point-to-Point Communication

▶ MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
▶ Message matching occurs here
▶ MPI Partitioned does not accept wildcards

▶ MPI_Start is called to start communication
▶ A parallel for loop is launched

▶ Work is Computed
▶ Once data is ready, MPI_Pready is called
▶ Optionally, MPI_Parrived to check if

incoming data has arrived

▶ MPI_Waitall is called to complete
communication

▶ A good implementation does not have the
serialization issues of MPI Point-to-Point

MPI_Start

MPI_Psend_init

MPI_Pready

MPI_Pready

MPI_Pready

MPI_Wait

MPI_Start

MPI_Precv_init

MPI_Wait

MPI_Parrived

MPI_Parrived

MPI_Parrived

P0 P1

PPRL / CEASER BID ‘23 14 / 26

Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:

▶ How can we understand the behaviour and performance of MPI Partitioned?

▶ How could existing applications benefit from this new programming model?
▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26

Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:

▶ How can we understand the behaviour and performance of MPI Partitioned?

▶ How could existing applications benefit from this new programming model?
▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26

Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:

▶ How can we understand the behaviour and performance of MPI Partitioned?

▶ How could existing applications benefit from this new programming model?
▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26

Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:

▶ How can we understand the behaviour and performance of MPI Partitioned?

▶ How could existing applications benefit from this new programming model?
▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26

Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:
▶ How can we understand the behaviour and performance of MPI Partitioned?

▶ How could existing applications benefit from this new programming model?
▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26

Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:
▶ How can we understand the behaviour and performance of MPI Partitioned?
▶ How could existing applications benefit from this new programming model?

▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26

Motivation

▶ Commonly used benchmarks do not support MPI Partitioned
▶ Sandia Micro Benchmarks (SMB)
▶ OSU Micro Benchmarks (OSU)
▶ Intel MPI Benchmarks (IMB)

▶ Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

▶ No production application uses MPI Partitioned
▶ How can we discover possible candidates for porting?

Research Questions
Can we design an MPI Partitioned Micro-benchmark to address the following:
▶ How can we understand the behaviour and performance of MPI Partitioned?
▶ How could existing applications benefit from this new programming model?
▶ What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID ‘23 15 / 26

Experiment Setup

▶ Niagara Supercomputer at SciNet1

▶ 2x 20 Core Intel Skylake at 2.4GHz
▶ EDR InfiniBand Network
▶ GNU/Linux - CentOS 7.6
▶ Open MPI (master branch)
▶ UCX v1.11.0
▶ MPIPCL

1SciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario;
Ontario Research Fund - Research Excellence; and the University of Toronto This research was
enabled in part by support provided by the Digital Research Alliance of Canada

PPRL / CEASER BID ‘23 16 / 26

Overhead

▶ What is the cost of using MPI
Partitioned?

▶ We measure each individual data
transfer

▶ Compare it to MPI Point-to-Point

Overhead =
tpart

tpt2pt

T
hr

ea
ds

 F
or

k

Partitioned Send Timeline
Thread #1 Comp Thread #1 Data Transfer

Thread #2 Comp Thread #2 Data Transfer

Thread #3 Comp Thread #3 Data Transfer

Thread #4 Comp Thread #4 Data Transfer

Thread Join tpt2pt

T
hr

ea
ds

 F
or

k Thread #1 Comp

Thread #1 Data Transfer

Thread #2 Comp

Thread #2 Data Transfer

Thread #3 Comp

Thread #3 Data TransferThread #4 Comp Thread #4 Data Transfer

Traditional Send Timeline

tpart

PPRL / CEASER BID ‘23 17 / 26

Overhead

▶ What is the cost of using MPI
Partitioned?
▶ We measure each individual data

transfer
▶ Compare it to MPI Point-to-Point

Overhead =
tpart

tpt2pt

T
hr

ea
ds

 F
or

k

Partitioned Send Timeline
Thread #1 Comp Thread #1 Data Transfer

Thread #2 Comp Thread #2 Data Transfer

Thread #3 Comp Thread #3 Data Transfer

Thread #4 Comp Thread #4 Data Transfer

Thread Join tpt2pt

T
hr

ea
ds

 F
or

k Thread #1 Comp

Thread #1 Data Transfer

Thread #2 Comp

Thread #2 Data Transfer

Thread #3 Comp

Thread #3 Data TransferThread #4 Comp Thread #4 Data Transfer

Traditional Send Timeline

tpart

PPRL / CEASER BID ‘23 17 / 26

Overhead

▶ What is the cost of using MPI
Partitioned?
▶ We measure each individual data

transfer
▶ Compare it to MPI Point-to-Point

Overhead =
tpart

tpt2pt

T
hr

ea
ds

 F
or

k

Partitioned Send Timeline
Thread #1 Comp Thread #1 Data Transfer

Thread #2 Comp Thread #2 Data Transfer

Thread #3 Comp Thread #3 Data Transfer

Thread #4 Comp Thread #4 Data Transfer

Thread Join tpt2pt

T
hr

ea
ds

 F
or

k Thread #1 Comp

Thread #1 Data Transfer

Thread #2 Comp

Thread #2 Data Transfer

Thread #3 Comp

Thread #3 Data TransferThread #4 Comp Thread #4 Data Transfer

Traditional Send Timeline

tpart

PPRL / CEASER BID ‘23 17 / 26

Overhead Results

▶ Partition count correlates with overhead

▶ Overheads mostly impact small messages

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

O
ve

rh
ea

d

Partitions

1
2
4

8
16
32

(a) Cold Cache

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

O
ve

rh
ea

d

Partitions

1
2
4

8
16
32

(b) Hot Cache

Overhead of Partitioned Point-to-Point Communication Relative to Point-to-Point
Communication for 10ms of Compute

PPRL / CEASER BID ‘23 18 / 26

Overhead Results

▶ Partition count correlates with overhead

▶ Overheads mostly impact small messages

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

O
ve

rh
ea

d

Partitions

1
2
4

8
16
32

(a) Cold Cache

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

O
ve

rh
ea

d

Partitions

1
2
4

8
16
32

(b) Hot Cache

Overhead of Partitioned Point-to-Point Communication Relative to Point-to-Point
Communication for 10ms of Compute

PPRL / CEASER BID ‘23 18 / 26

Overhead Results

▶ Partition count correlates with overhead
▶ Overheads mostly impact small messages

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

O
ve

rh
ea

d

Partitions

1
2
4

8
16
32

(a) Cold Cache

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

O
ve

rh
ea

d

Partitions

1
2
4

8
16
32

(b) Hot Cache

Overhead of Partitioned Point-to-Point Communication Relative to Point-to-Point
Communication for 10ms of Compute

PPRL / CEASER BID ‘23 18 / 26

Perceived Bandwidth

▶ What would be the required
network bandwidth for MPI
Point-to-Point to perform the same
as MPI Partitioned?

Perceived Bandwidth =
m

tpart_last

T
hr

ea
ds

 F
or

k

Partitioned Send Timeline
Thread #1 Comp Thread #1 Data Transfer

Thread #2 Comp Thread #2 Data Transfer

Thread #3 Comp Thread #3 Data Transfer

Thread #4 Comp Thread #4 Data Transfer

tpart_last

PPRL / CEASER BID ‘23 19 / 26

Perceived Bandwidth

▶ What would be the required
network bandwidth for MPI
Point-to-Point to perform the same
as MPI Partitioned?

Perceived Bandwidth =
m

tpart_last

T
hr

ea
ds

 F
or

k

Partitioned Send Timeline
Thread #1 Comp Thread #1 Data Transfer

Thread #2 Comp Thread #2 Data Transfer

Thread #3 Comp Thread #3 Data Transfer

Thread #4 Comp Thread #4 Data Transfer

tpart_last

PPRL / CEASER BID ‘23 19 / 26

Perceived Bandwidth

▶ What would be the required
network bandwidth for MPI
Point-to-Point to perform the same
as MPI Partitioned?

Perceived Bandwidth =
m

tpart_last

T
hr

ea
ds

 F
or

k

Partitioned Send Timeline
Thread #1 Comp Thread #1 Data Transfer

Thread #2 Comp Thread #2 Data Transfer

Thread #3 Comp Thread #3 Data Transfer

Thread #4 Comp Thread #4 Data Transfer

tpart_last

PPRL / CEASER BID ‘23 19 / 26

Perceived Bandwidth Results

▶ With 0% noise, we see our
traditional bandwidth curve

▶ Peak bandwidth is obtained
for medium sized messages

▶ Actual network bandwidth
is saturated for large
messages, thus perceived
bandwidth drops

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

2

4

6

8

10

12

14

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(a) 10ms Comp with 0%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(b) 10ms Comp with 4%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

70

80

90

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(c) 10ms Comp with 10%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

2

4

6

8

10

12

14

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(d) 100ms Comp with 0%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

20

40

60

80

100

120

140

160

180

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(e) 100ms Comp with 4%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

50

100

150

200

250

300

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(f) 100ms Comp with 10%
Noise

Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform
Noise and a Hot Cache for Different Noise and Compute Amounts

PPRL / CEASER BID ‘23 20 / 26

Perceived Bandwidth Results

▶ With 0% noise, we see our
traditional bandwidth curve

▶ Peak bandwidth is obtained
for medium sized messages

▶ Actual network bandwidth
is saturated for large
messages, thus perceived
bandwidth drops

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

2

4

6

8

10

12

14

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(a) 10ms Comp with 0%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(b) 10ms Comp with 4%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

70

80

90

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(c) 10ms Comp with 10%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

2

4

6

8

10

12

14

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(d) 100ms Comp with 0%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

20

40

60

80

100

120

140

160

180

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(e) 100ms Comp with 4%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

50

100

150

200

250

300

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(f) 100ms Comp with 10%
Noise

Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform
Noise and a Hot Cache for Different Noise and Compute Amounts

PPRL / CEASER BID ‘23 20 / 26

Perceived Bandwidth Results

▶ With 0% noise, we see our
traditional bandwidth curve

▶ Peak bandwidth is obtained
for medium sized messages

▶ Actual network bandwidth
is saturated for large
messages, thus perceived
bandwidth drops

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

2

4

6

8

10

12

14

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(a) 10ms Comp with 0%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(b) 10ms Comp with 4%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

70

80

90

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(c) 10ms Comp with 10%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

2

4

6

8

10

12

14

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(d) 100ms Comp with 0%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

20

40

60

80

100

120

140

160

180

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(e) 100ms Comp with 4%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

50

100

150

200

250

300

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(f) 100ms Comp with 10%
Noise

Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform
Noise and a Hot Cache for Different Noise and Compute Amounts

PPRL / CEASER BID ‘23 20 / 26

Perceived Bandwidth Results

▶ With 0% noise, we see our
traditional bandwidth curve

▶ Peak bandwidth is obtained
for medium sized messages

▶ Actual network bandwidth
is saturated for large
messages, thus perceived
bandwidth drops

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

2

4

6

8

10

12

14

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(a) 10ms Comp with 0%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(b) 10ms Comp with 4%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

10

20

30

40

50

60

70

80

90

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(c) 10ms Comp with 10%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

2

4

6

8

10

12

14

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(d) 100ms Comp with 0%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

20

40

60

80

100

120

140

160

180

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(e) 100ms Comp with 4%
Noise

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

0

50

100

150

200

250

300

Pe
rc

ei
ve

d
B

an
dw

id
th

(G
B

/s
)

Partitions

1
2
4
8
16
32

(f) 100ms Comp with 10%
Noise

Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform
Noise and a Hot Cache for Different Noise and Compute Amounts

PPRL / CEASER BID ‘23 20 / 26

Sweep3D Communication Pattern

▶ Sweep3D communication pattern
has lots of dependencies

▶ Generally, multi-threading performs
better than single threaded

▶ The MPI Partition implementation
used in this work is built upon MPI
Send/Recv
▶ Therefore minimal difference for

most message sizes

▶ Up to 15.1x higher throughput for
large message sizes

4K 64K 1M 16M 256M
Message Size (B)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
hr

ou
gh

pu
t

(K
B

/s
)

Threading Mode
SINGLE
MULTIPLE
PARTITIONED

Sweep3D communication throughput for 16
partitions, 10ms compute, and 4% Single

Noise with a Hot Cache

PPRL / CEASER BID ‘23 21 / 26

Sweep3D Communication Pattern

▶ Sweep3D communication pattern
has lots of dependencies

▶ Generally, multi-threading performs
better than single threaded

▶ The MPI Partition implementation
used in this work is built upon MPI
Send/Recv
▶ Therefore minimal difference for

most message sizes

▶ Up to 15.1x higher throughput for
large message sizes

4K 64K 1M 16M 256M
Message Size (B)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
hr

ou
gh

pu
t

(K
B

/s
)

Threading Mode
SINGLE
MULTIPLE
PARTITIONED

Sweep3D communication throughput for 16
partitions, 10ms compute, and 4% Single

Noise with a Hot Cache

PPRL / CEASER BID ‘23 21 / 26

Sweep3D Communication Pattern

▶ Sweep3D communication pattern
has lots of dependencies

▶ Generally, multi-threading performs
better than single threaded

▶ The MPI Partition implementation
used in this work is built upon MPI
Send/Recv
▶ Therefore minimal difference for

most message sizes

▶ Up to 15.1x higher throughput for
large message sizes

4K 64K 1M 16M 256M
Message Size (B)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
hr

ou
gh

pu
t

(K
B

/s
)

Threading Mode
SINGLE
MULTIPLE
PARTITIONED

Sweep3D communication throughput for 16
partitions, 10ms compute, and 4% Single

Noise with a Hot Cache

PPRL / CEASER BID ‘23 21 / 26

Sweep3D Communication Pattern

▶ Sweep3D communication pattern
has lots of dependencies

▶ Generally, multi-threading performs
better than single threaded

▶ The MPI Partition implementation
used in this work is built upon MPI
Send/Recv

▶ Therefore minimal difference for
most message sizes

▶ Up to 15.1x higher throughput for
large message sizes

4K 64K 1M 16M 256M
Message Size (B)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
hr

ou
gh

pu
t

(K
B

/s
)

Threading Mode
SINGLE
MULTIPLE
PARTITIONED

Sweep3D communication throughput for 16
partitions, 10ms compute, and 4% Single

Noise with a Hot Cache

PPRL / CEASER BID ‘23 21 / 26

Sweep3D Communication Pattern

▶ Sweep3D communication pattern
has lots of dependencies

▶ Generally, multi-threading performs
better than single threaded

▶ The MPI Partition implementation
used in this work is built upon MPI
Send/Recv
▶ Therefore minimal difference for

most message sizes

▶ Up to 15.1x higher throughput for
large message sizes

4K 64K 1M 16M 256M
Message Size (B)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
hr

ou
gh

pu
t

(K
B

/s
)

Threading Mode
SINGLE
MULTIPLE
PARTITIONED

Sweep3D communication throughput for 16
partitions, 10ms compute, and 4% Single

Noise with a Hot Cache

PPRL / CEASER BID ‘23 21 / 26

Sweep3D Communication Pattern

▶ Sweep3D communication pattern
has lots of dependencies

▶ Generally, multi-threading performs
better than single threaded

▶ The MPI Partition implementation
used in this work is built upon MPI
Send/Recv
▶ Therefore minimal difference for

most message sizes

▶ Up to 15.1x higher throughput for
large message sizes

4K 64K 1M 16M 256M
Message Size (B)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
hr

ou
gh

pu
t

(K
B

/s
)

Threading Mode
SINGLE
MULTIPLE
PARTITIONED

Sweep3D communication throughput for 16
partitions, 10ms compute, and 4% Single

Noise with a Hot Cache

PPRL / CEASER BID ‘23 21 / 26

Potential Application Improvements

▶ The Sweep3D communication
pattern showed potential for if it
were ported to MPI Partitioned

▶ SNAP uses a Sweep3D
communication
▶ We profiled SNAP’s

communication
▶ Projected the potential speedup

2/32 4/64 8/128 16/256 32/512 64/1K 128/2K 256/4K
Processes/Threads

0:0

0:5

1:0

1:5

2:0

2:5

Sp
ee

du
p

1.02 1.04 1.05 1.06 1.06 1.08
1.24

2.03

Expected Speedup From Porting SNAP-C to
MPI Partitioned

PPRL / CEASER BID ‘23 22 / 26

Potential Application Improvements

▶ The Sweep3D communication
pattern showed potential for if it
were ported to MPI Partitioned

▶ SNAP uses a Sweep3D
communication
▶ We profiled SNAP’s

communication
▶ Projected the potential speedup

2/32 4/64 8/128 16/256 32/512 64/1K 128/2K 256/4K
Processes/Threads

0:0

0:5

1:0

1:5

2:0

2:5

Sp
ee

du
p

1.02 1.04 1.05 1.06 1.06 1.08
1.24

2.03

Expected Speedup From Porting SNAP-C to
MPI Partitioned

PPRL / CEASER BID ‘23 22 / 26

Potential Application Improvements

▶ The Sweep3D communication
pattern showed potential for if it
were ported to MPI Partitioned

▶ SNAP uses a Sweep3D
communication
▶ We profiled SNAP’s

communication
▶ Projected the potential speedup

2/32 4/64 8/128 16/256 32/512 64/1K 128/2K 256/4K
Processes/Threads

0:0

0:5

1:0

1:5

2:0

2:5

Sp
ee

du
p

1.02 1.04 1.05 1.06 1.06 1.08
1.24

2.03

Expected Speedup From Porting SNAP-C to
MPI Partitioned

PPRL / CEASER BID ‘23 22 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning

▶ Deep Learning workloads use MPI_Allreduce collective with large messages
extensively

▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication

▶ We provide the first MPI Partitioned Micro-Benchmark Suite

▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work

▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning
▶ Deep Learning workloads use MPI_Allreduce collective with large messages

extensively

▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication

▶ We provide the first MPI Partitioned Micro-Benchmark Suite

▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work

▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning
▶ Deep Learning workloads use MPI_Allreduce collective with large messages

extensively
▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication

▶ We provide the first MPI Partitioned Micro-Benchmark Suite

▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work

▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning
▶ Deep Learning workloads use MPI_Allreduce collective with large messages

extensively
▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack

▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication

▶ We provide the first MPI Partitioned Micro-Benchmark Suite

▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work

▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning
▶ Deep Learning workloads use MPI_Allreduce collective with large messages

extensively
▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication

▶ We provide the first MPI Partitioned Micro-Benchmark Suite

▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work

▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning
▶ Deep Learning workloads use MPI_Allreduce collective with large messages

extensively
▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication

▶ We provide the first MPI Partitioned Micro-Benchmark Suite

▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work

▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning
▶ Deep Learning workloads use MPI_Allreduce collective with large messages

extensively
▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication
▶ We provide the first MPI Partitioned Micro-Benchmark Suite

▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work

▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning
▶ Deep Learning workloads use MPI_Allreduce collective with large messages

extensively
▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication
▶ We provide the first MPI Partitioned Micro-Benchmark Suite
▶ Showed what communication patterns could benefit from MPI Partitioned

▶ Analyzed MPI Partitioned with a range of different metrics

Future Work

▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning
▶ Deep Learning workloads use MPI_Allreduce collective with large messages

extensively
▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication
▶ We provide the first MPI Partitioned Micro-Benchmark Suite
▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work

▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning
▶ Deep Learning workloads use MPI_Allreduce collective with large messages

extensively
▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication
▶ We provide the first MPI Partitioned Micro-Benchmark Suite
▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work

▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning
▶ Deep Learning workloads use MPI_Allreduce collective with large messages

extensively
▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication
▶ We provide the first MPI Partitioned Micro-Benchmark Suite
▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work
▶ Compare across different MPI implementations

▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning
▶ Deep Learning workloads use MPI_Allreduce collective with large messages

extensively
▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication
▶ We provide the first MPI Partitioned Micro-Benchmark Suite
▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work
▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results

▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Conclusion And Future Work

▶ Benchmarking for MPI-Based Deep Learning
▶ Deep Learning workloads use MPI_Allreduce collective with large messages

extensively
▶ We proposed an intra-socket multi-path point-to-point MPI collective

▶ Evaluated with different benchmarks for each layer of the software stack
▶ For Deep Learning applications we see up to 3.42x speedup

▶ Benchmarking for MPI-Partitioned Communication
▶ We provide the first MPI Partitioned Micro-Benchmark Suite
▶ Showed what communication patterns could benefit from MPI Partitioned
▶ Analyzed MPI Partitioned with a range of different metrics

Future Work
▶ Compare across different MPI implementations
▶ Porting Applications to MPI Partitioned based upon benchmarking results
▶ MPI Partitioned Collectives

PPRL / CEASER BID ‘23 23 / 26

Thank You!

PPRL / CEASER BID ‘23 24 / 26

Acknowledgements

PPRL / CEASER BID ‘23 25 / 26

Y. H. Temuçin, A. Sojoodi, P. Alizadeh, and A. Afsahi, “Efficient Multi-Path
NVLink/PCIe-Aware UCX based Collective Communication for Deep Learning,” in 2021 IEEE
Symposium on High-Performance Interconnects (HOTI), 2021, pp. 25–34.

Y. H. Temuçin, A. H. Sojoodi, P. Alizadeh, B. Kitor, and A. Afsahi, “Accelerating Deep Learning
Using Interconnect-Aware UCX Communication for MPI Collectives,” IEEE Micro, vol. 42,
no. 2, pp. 68–76, 2022.

Y. H. Temucin, R. E. Grant, and A. Afsahi, “Micro-Benchmarking MPI Partitioned
Point-to-Point Communication,” in Proceedings of the 51st International Conference on Parallel
Processing, ser. ICPP ’22. New York, NY, USA: Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1145/3545008.3545088

PPRL / CEASER BID ‘23 26 / 26

https://doi.org/10.1145/3545008.3545088

	Introduction
	Open MPI + UCX

	Benchmarking for MPI-Based Deep Learning
	RMA and Collective Communication Design
	Micro-Benchmarks
	Application Results

	Benchmarking for MPI-Partitioned Communication
	MPI Partitioned Point-to-Point Communication
	Overhead
	Perceived Bandwidth
	Sweep3D Communication Pattern

	Conclusion And Future Work

