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Introduction

» HPC is used to solve large complex problems in many domains
Communication is one of the main bottlenecks in applications
There has been a recent popularity of systems with accelerators
» The Message Passing Interface (MPI)

Popular parallel programming model in HPC
Provides multiple communication APIs
» Point-to-point
» Partitioned point-to-point
» RMA
» Collective Communication (MPI_Allreduce, MPI_Bcast, etc.)

» MPI based Deep Learning on HPC systems

As the complexity of DL models grow we move towards using the aggregate
power of HPC systems
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Open MPT + UCX

» UCX provides abstract communication
primitives to best utilise hardware
Point-to-point implemented upon RMA
Put/Get operations

HPC and DL Applications
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Open MPT + UCX

» UCX provides abstract communication
primitives to best utilise hardware

Point-to-point implemented upon RMA
Put/Get operations

» Open MPI is an open source MPI
implementation
Point-to-point communication directly
relies on UCX for data transfers
Collective communication are internally
built with point-to-point primitives

HPC and DL Applications

Open MPI

| COLL | PMLUCX |
uUcx

| ucP || uct || ucs |

Research Goals

» Improve the performance of GPU MPI communication for Deep Learning

» Obtain a better understanding of the MPI Partitioned Interface
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Benchmarking for MPI-Based
Deep Learning
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MPI-based Deep Learning @
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MPI-based Deep Learning

» Distributed Deep Learning using Horovod is
possible with models from:
TensorFlow
PyTorch
MXNet
» Horovod uses the data-parallel training
method using MPI_Allreduce
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MPI-based Deep Learning

» Distributed Deep Learning using Horovod is
possible with models from:
TensorFlow
PyTorch
MXNet

» Horovod uses the data-parallel training
method using MPI_Allreduce

17-83% of training time was spent in
MPI_Allreduce

Up to 80% of runtime was spent in a GPU
based MPI_Allreduce
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Multi-Path Copy Motivation

» MPI sends data directly from GPUj, to GPU;

Uses a zero copy put operation in UCX
(As shown by the solid red line)
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Multi-Path Copy Motivation @

Memory
» MPI sends data directly from GPUj, to GPU; '." ] “‘_
Uses a zero copy put operation in UCX cpU )
(As shown by the solid red line) 0
» Six idle NVLinks connected to the host /
» A large amount of unused potential bandwidth GPU, GPU,

— NVLink (25GB/s)

Research Question

Can we design a mechanism to use all communication paths?
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Multi-Path Copy Motivation

» We used the ucx_perftest
micro-benchmarks to assess the
viability of our design idea
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Multi-Path Copy Motivation @
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Hierarchical Allreduce with Multi-Path Copy @

» The proposed MPI_Allreduce
algorithm has three steps:
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Hierarchical Allreduce with Multi-Path Copy @

» The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
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Hierarchical Allreduce with Multi-Path Copy @

» The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and
reduce

PPRL / CEASER

Memory Memory
...........................
(47N 147\

5 5o =)

n, 0, [N ,

O O O )
= NVLink (25GB/s)  wwweee: X-Bus (32GB/s)

PCle Gen4 (32GB/s)

BID “23 8/26



Hierarchical Allreduce with Multi-Path Copy @

» The proposed MPI_Allreduce
algorithm has three steps:
1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and
reduce
3. Intra-socket multi-path broadcast
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Hierarchical Allreduce with Multi-Path Copy

» The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce

2. Inter-socket leaders exchange and
reduce

3. Intra-socket multi-path broadcast

» Design Optimisations

Steps 1-3 are pipelined
Inter-socket communication
dynamically switches between
PCle and NVLink
Dynamically send data using

Multi-path or Peer-to-Peer copies
via the host links

» Minimise intra-socket congestion
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Experimental Setup

» Hardware:
IBM AC922
32 Core, 128 Thread Power9 CPU
256GB RAM
Four V100-SMX2-32GB
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Experimental Setup @

» Hardware:
IBM AC922
32 Core, 128 Thread Power9 CPU
256GB RAM

Four V100-SMX2-32GB
» Software:

Open MPT 4.0.4rc2

UCX 1.8.0

Open MPI + HPC-X v2.7

ADVANCED RESEARCH COMPUTING at the UNIVERSITY OF TORONTO
Spectrum-MPI 10.3.1

MVAPICH2-GDR 2.3.5
NCCL 25.6

Horovod 0.20.3
TensorFlow 1.15.2
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UCX Put and MPI Point-to-Point Results @
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MPI_Allreduce OSU Microbenchmark Results @
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» Much lower latency than Open MPI
+ HPC-X
» At 1GB we see speedup of:

1.47x over MVAPICH2-GDR
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Application Results

Throughput (img/sec)

» ResNet50 up to 1.56x speedup
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Application Results @

» ResNet50 up to 1.56x speedup =S
» Modifying fusion threshold increases message sizes to 128MB
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Benchmarking for MPI-Partitioned
Communication
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MPI Partitioned Point-to-Point Communication !

» MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
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» MPI_Psend_init/MPI_Precv_init is used to

initialize communication between processes Po P
Message matching occurs here

MPI Partitioned does not accept wildcards

MPI_Pready
| Lepresdy |
MPI_Pready [-L| MPI_Pready
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» MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
Message matching occurs here
MPI Partitioned does not accept wildcards

» MPI_Start is called to start communication
» A parallel for loop is launched
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» MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
Message matching occurs here
MPI Partitioned does not accept wildcards

» MPI_Start is called to start communication

» A parallel for loop is launched

Work is Computed

Once data is ready, MPI_Pready is called
Optionally, MPI_Parrived to check if
incoming data has arrived
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MPI Partitioned Point-to-Point Communication

MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
Message matching occurs here
MPI Partitioned does not accept wildcards
MPI_Start is called to start communication
A parallel for loop is launched
Work is Computed
Once data is ready, MPI_Pready is called
Optionally, MPI_Parrived to check if
incoming data has arrived
MPI_Waitall is called to complete
communication
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MPI Partitioned Point-to-Point Communication

MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
Message matching occurs here
MPI Partitioned does not accept wildcards
MPI_Start is called to start communication
A parallel for loop is launched
Work is Computed
Once data is ready, MPI_Pready is called
Optionally, MPI_Parrived to check if
incoming data has arrived
MPI_Waitall is called to complete
communication

A good implementation does not have the
serialization issues of MPI Point-to-Point
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MP|_Start MP|_Start
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_Pready |

! | |
MPI_Parrived
MPI_Pready PI_Pready |

\ MPI_Parrived] | [MPL_Parrived
MPI_Wait

MPI_Precv_init

MPI_Wait
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Motivation

» Commonly used benchmarks do not support MPI Partitioned

Sandia Micro Benchmarks (SMB)
OSU Micro Benchmarks (OSU)
Intel MPI Benchmarks (IMB)

» Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned
» No production application uses MPI Partitioned
How can we discover possible candidates for porting?

Research Questions

Can we design an MPI Partitioned Micro-benchmark to address the following:
» How can we understand the behaviour and performance of MPI Partitioned?
» How could existing applications benefit from this new programming model?
» What are appropriate partition sizes for application developers to use?
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Experiment Setup

» Niagara Supercomputer at SciNet!
2x 20 Core Intel Skylake at 2.4GHz
EDR InfiniBand Network
GNU/Linux - CentOS 7.6
Open MPI (master branch)
UCXv1.11.0
MPIPCL

15ciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario;
Ontario Research Fund - Research Excellence; and the University of Toronto This research was
enabled in part by support provided by the Digital Research Alliance of Canada
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Overhead

» What is the cost of using MPI

Partitioned? tpurt
o Overhead =
We measure each individual data tpropt
transfer

Compare it to MPI Point-to-Point

Traditional Send Timeline

Threads Fork

Thread #1 Data Transfer | Thread #2 Data Transfer | Thread #3 Data Transfer | Thread #4 Data Transfer

‘Thread Join

tpt2pt

Partitioned Send Timeline
Thread #1 Data Transfer

Thread #2 Data Transfer

Thread #3 Data Transfer

Thread #4 Data Transfer

Threads Fork

part
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Overhead Results
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Overhead Results

» Partition count correlates with overhead
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Overhead Results

» Partition count correlates with overhead Ql, ‘

» Overheads mostly impact small messages
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Perceived Bandwidth @

» What would be the required m
network bandwidth for MPI Perceived Bandwidth = ————
Point-to-Point to perform the same part last
as MPI Partitioned?

Partitioned Send Timeline

Thread #1 Data Transfer ‘

Thread #2 Data Transfer ‘

Thread #3 Data Transfer ‘

Threads Fork

‘ Thread #4 Data Transfer

part_last

| 4

&
<
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Perceived Bandwidth Results

» With 0% noise, we see our
traditional bandwidth curve
. . . (a) 10ms Comp with 0% (b) 10ms Comp with 4% () 10ms Comp with 10%
» Peak bandwidth is obtained Nops Nop s N
for medium sized messages

» Actual network bandwidth
is saturated for large
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Sweep3D Communication Pattern

» Sweep3D communication pattern
has lots of dependencies

» Generally, multi-threading performs
better than single threaded

» The MPI Partition implementation

used in this work is built upon MPI
Send/Recv

Therefore minimal difference for
most message sizes

» Up to 15.1x higher throughput for
large message sizes
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Potential Application Improvements

2.5
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» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively
We proposed an intra-socket multi-path point-to-point MPI collective

» Evaluated with different benchmarks for each layer of the software stack
» For Deep Learning applications we see up to 3.42x speedup

» Benchmarking for MPI-Partitioned Communication

We provide the first MPI Partitioned Micro-Benchmark Suite
Showed what communication patterns could benefit from MPI Partitioned
Analyzed MPI Partitioned with a range of different metrics

» Compare across different MPI implementations
» Porting Applications to MPI Partitioned based upon benchmarking results
» MPI Partitioned Collectives
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