

Benchmarking MPI for Deep Learning and HPC Workloads

Yıltan Hassan Temuçin

Parallel Processing Research Laboratory (PPRL) Computing At Extreme Scale Advanced Research Laboratory (CEASER) Department of Electrical and Computer Engineering Queen's University, Canada

Benchmarking in the Data Center: Expanding to the Cloud Febuary 25th 2023

Outline

Queen's

Introduction Open MPI + UCX

Benchmarking for MPI-Based Deep Learning RMA and Collective Communication Design Micro-Benchmarks Application Results

Benchmarking for MPI-Partitioned Communication

MPI Partitioned Point-to-Point Communication Overhead Perceived Bandwidth Sweep3D Communication Pattern

Conclusion And Future Work

Introduction

- ▶ HPC is used to solve large complex problems in many domains
 - > Communication is one of the main bottlenecks in applications
 - > There has been a recent popularity of systems with accelerators

Introduction

- ▶ HPC is used to solve large complex problems in many domains
 - Communication is one of the main bottlenecks in applications
 - > There has been a recent popularity of systems with accelerators
- ► The Message Passing Interface (MPI)
 - Popular parallel programming model in HPC
 - Provides multiple communication APIs
 - Point-to-point
 - Partitioned point-to-point
 - ► RMA
 - Collective Communication (MPI_Allreduce, MPI_Bcast, etc.)

Introduction

- ▶ HPC is used to solve large complex problems in many domains
 - Communication is one of the main bottlenecks in applications
 - There has been a recent popularity of systems with accelerators
- ► The Message Passing Interface (MPI)
 - Popular parallel programming model in HPC
 - Provides multiple communication APIs
 - Point-to-point
 - Partitioned point-to-point
 - ► RMA
 - Collective Communication (MPI_Allreduce, MPI_Bcast, etc.)
- MPI based Deep Learning on HPC systems
 - As the complexity of DL models grow we move towards using the aggregate power of HPC systems

Open MPI + UCX

- UCX provides abstract communication primitives to best utilise hardware
 - Point-to-point implemented upon RMA Put/Get operations

HPC and DL Applications	
Open MPI	
COLL	PML UCX
UCX	
UCP U	ICT UCS

Open MPI + UCX

- UCX provides abstract communication primitives to best utilise hardware
 - Point-to-point implemented upon RMA Put/Get operations
- **Open MPI** is an open source MPI implementation
 - Point-to-point communication directly relies on UCX for data transfers
 - Collective communication are internally built with point-to-point primitives

Open MPI + UCX

- UCX provides abstract communication primitives to best utilise hardware
 - Point-to-point implemented upon RMA Put/Get operations
- **Open MPI** is an open source MPI implementation
 - Point-to-point communication directly relies on UCX for data transfers
 - Collective communication are internally built with point-to-point primitives

Research Goals

- ▶ Improve the performance of GPU MPI communication for Deep Learning
- Obtain a better understanding of the MPI Partitioned Interface

Benchmarking for MPI-Based Deep Learning

 Distributed Deep Learning using Horovod is possible with models from:

- Distributed Deep Learning using Horovod is possible with models from:
 - TensorFlow
 - PyTorch
 - MXNet

- Distributed Deep Learning using Horovod is possible with models from:
 - TensorFlow
 - PyTorch
 - MXNet
- Horovod uses the data-parallel training method using MPI_Allreduce

- Distributed Deep Learning using Horovod is possible with models from:
 - TensorFlow
 - PyTorch
 - MXNet
- Horovod uses the data-parallel training method using MPI_Allreduce
 - 17-83% of training time was spent in MPI_Allreduce

- Distributed Deep Learning using Horovod is possible with models from:
 - TensorFlow
 - PyTorch
 - MXNet
- Horovod uses the data-parallel training method using MPI_Allreduce
 - 17-83% of training time was spent in MPI_Allreduce
 - Up to 80% of runtime was spent in a GPU based MPI_Allreduce

Percentage of Run-time

Impact of MPI_Allreduce on a single IBM AC922 node

Mode

Queens

- Uses a zero copy put operation in UCX
- (As shown by the solid red line)

— NVLink (25GB/s)

▶ MPI sends data directly from GPU₀ to GPU₁

- Uses a zero copy put operation in UCX
- (As shown by the solid red line)
- ► Six idle NVLinks connected to the host

— NVLink (25GB/s)

▶ MPI sends data directly from GPU₀ to GPU₁

- Uses a zero copy put operation in UCX
- (As shown by the solid red line)
- ► Six idle NVLinks connected to the host
- ► A large amount of unused potential bandwidth

— NVLink (25GB/s)

- Uses a zero copy put operation in UCX
- (As shown by the solid red line)
- Six idle NVLinks connected to the host
- ► A large amount of unused potential bandwidth

— NVLink (25GB/s)

Research Question

Can we design a mechanism to use all communication paths?

 We used the ucx_perftest micro-benchmarks to assess the viability of our design idea

- We used the ucx_perftest micro-benchmarks to assess the viability of our design idea
- ▶ Preliminary investigation showed:

- We used the ucx_perftest micro-benchmarks to assess the viability of our design idea
- ▶ Preliminary investigation showed:
 - Stream count impacts peak bandwidth for the host-path

70000 -

60000

50000

20000

(^{S/}W 40000

41 20000

- We used the ucx_perftest micro-benchmarks to assess the viability of our design idea
- ► Preliminary investigation showed:
 - Stream count impacts peak bandwidth for the host-path
 - Stream count is dependent on message size

Queens

- We used the ucx_perftest micro-benchmarks to assess the viability of our design idea
- ► Preliminary investigation showed:
 - Stream count impacts peak bandwidth for the host-path
 - Stream count is dependent on message size
 - Up to 53GB/s of unused bandwidth

The proposed MPI_Allreduce algorithm has three steps:

- The proposed MPI_Allreduce algorithm has three steps:
 - 1. Intra-socket multi-path reduce

- The proposed MPI_Allreduce algorithm has three steps:
 - 1. Intra-socket multi-path reduce
 - 2. Inter-socket leaders exchange and reduce

- The proposed MPI_Allreduce algorithm has three steps:
 - 1. Intra-socket multi-path reduce
 - 2. Inter-socket leaders exchange and reduce
 - 3. Intra-socket multi-path broadcast

- The proposed MPI_Allreduce algorithm has three steps:
 - 1. Intra-socket multi-path reduce
 - 2. Inter-socket leaders exchange and reduce
 - 3. Intra-socket multi-path broadcast
- Design Optimisations

- The proposed MPI_Allreduce algorithm has three steps:
 - 1. Intra-socket multi-path reduce
 - 2. Inter-socket leaders exchange and reduce
 - 3. Intra-socket multi-path broadcast
- Design Optimisations
 - Steps 1-3 are pipelined

- The proposed MPI_Allreduce algorithm has three steps:
 - 1. Intra-socket multi-path reduce
 - 2. Inter-socket leaders exchange and reduce
 - 3. Intra-socket multi-path broadcast
- Design Optimisations
 - Steps 1-3 are pipelined
 - Inter-socket communication dynamically switches between PCIe and NVLink

- The proposed MPI_Allreduce algorithm has three steps:
 - 1. Intra-socket multi-path reduce
 - 2. Inter-socket leaders exchange and reduce
 - 3. Intra-socket multi-path broadcast
- Design Optimisations
 - Steps 1-3 are pipelined
 - Inter-socket communication dynamically switches between PCIe and NVLink
 - Dynamically send data using Multi-path or Peer-to-Peer copies via the host links

- The proposed MPI_Allreduce algorithm has three steps:
 - 1. Intra-socket multi-path reduce
 - 2. Inter-socket leaders exchange and reduce
 - 3. Intra-socket multi-path broadcast
- Design Optimisations
 - Steps 1-3 are pipelined
 - Inter-socket communication dynamically switches between PCIe and NVLink
 - Dynamically send data using Multi-path or Peer-to-Peer copies via the host links
 - Minimise intra-socket congestion

Experimental Setup

► Hardware:

- ▶ IBM AC922
- ▶ 32 Core, 128 Thread Power9 CPU
- ▶ 256GB RAM
- ▶ Four V100-SMX2-32GB

ADVANCED RESEARCH COMPUTING at the UNIVERSITY OF TORONTO

Experimental Setup

► Hardware:

- ► IBM AC922
- 32 Core, 128 Thread Power9 CPU
- ▶ 256GB RAM
- ► Four V100-SMX2-32GB
- ► Software:
 - Open MPI 4.0.4rc2
 - ▶ UCX 1.8.0
 - Open MPI + HPC-X v2.7
 - ▶ Spectrum-MPI 10.3.1
 - MVAPICH2-GDR 2.3.5
 - ▶ NCCL 2.5.6
 - Horovod 0.20.3
 - TensorFlow 1.15.2

ADVANCED RESEARCH COMPUTING at the UNIVERSITY OF TORONTO

UCX Put and MPI Point-to-Point Results

UCX Put Bandwidth

MPI Unidirectional Bandwidth

UCX Put and MPI Point-to-Point Results

UCX Put Bandwidth

MPI Unidirectional Bandwidth
UCX Put and MPI Point-to-Point Results

UCX Put Bandwidth

MPI Unidirectional Bandwidth

MPI_Allreduce latency on 4 GPUs for very large message sizes

 Much lower latency than Open MPI + HPC-X

MPI_Allreduce latency on 4 GPUs for very large message sizes

MPI_Allreduce latency on 4 GPUs for very large message sizes

- Much lower latency than Open MPI + HPC-X
- ► At 1GB we see speedup of:

MPI_Allreduce latency on 4 GPUs for very large message sizes

 Much lower latency than Open MPI + HPC-X

- ► At 1GB we see speedup of:
 - ▶ 1.47x over MVAPICH2-GDR
 - 1.38x over NCCL

Application Results

▶ ResNet50 up to 1.56x speedup

Synthetic Horovod + TensorFlow benchmarks for ResNet50

GPU Message Sizes for different HOROVOD_FUSION_THREASHOLD

Application Results

▶ ResNet50 up to 1.56x speedup

Synthetic Horovod + TensorFlow benchmarks for ResNet50

GPU Message Sizes for different HOROVOD_FUSION_THREASHOLD

Benchmarking for MPI-Partitioned Communication

 MPI_Psend_init/MPI_Precv_init is used to initialize communication between processes

- Message matching occurs here
- MPI Partitioned does not accept wildcards

- MPI_Psend_init/MPI_Precv_init is used to initialize communication between processes
 - Message matching occurs here
 - MPI Partitioned does not accept wildcards
- MPI_Start is called to start communication

- MPI_Psend_init/MPI_Precv_init is used to initialize communication between processes
 - Message matching occurs here
 - MPI Partitioned does not accept wildcards
- MPI_Start is called to start communication
- ► A parallel for loop is launched

- MPI_Psend_init/MPI_Precv_init is used to initialize communication between processes
 - Message matching occurs here
 - MPI Partitioned does not accept wildcards
- MPI_Start is called to start communication
- ► A parallel for loop is launched
 - Work is Computed
 - Once data is ready, MPI_Pready is called
 - Optionally, MPI_Parrived to check if incoming data has arrived

- MPI_Psend_init/MPI_Precv_init is used to initialize communication between processes
 - Message matching occurs here
 - MPI Partitioned does not accept wildcards
- MPI_Start is called to start communication
- ► A parallel for loop is launched
 - Work is Computed
 - Once data is ready, MPI_Pready is called
 - Optionally, MPI_Parrived to check if incoming data has arrived
- MPI_Waitall is called to complete communication

- MPI_Psend_init/MPI_Precv_init is used to initialize communication between processes
 - Message matching occurs here
 - MPI Partitioned does not accept wildcards
- MPI_Start is called to start communication
- ► A parallel for loop is launched
 - Work is Computed
 - Once data is ready, MPI_Pready is called
 - Optionally, MPI_Parrived to check if incoming data has arrived
- MPI_Waitall is called to complete communication
- A good implementation does not have the serialization issues of MPI Point-to-Point

- ► Commonly used benchmarks do not support MPI Partitioned
 - Sandia Micro Benchmarks (SMB)
 - OSU Micro Benchmarks (OSU)
 - Intel MPI Benchmarks (IMB)

- ► Commonly used benchmarks do not support MPI Partitioned
 - Sandia Micro Benchmarks (SMB)
 - OSU Micro Benchmarks (OSU)
 - Intel MPI Benchmarks (IMB)
- Traditional point-to-point benchmarking techniques do not work for MPI Partitioned

- ► Commonly used benchmarks do not support MPI Partitioned
 - Sandia Micro Benchmarks (SMB)
 - OSU Micro Benchmarks (OSU)
 - Intel MPI Benchmarks (IMB)
- Traditional point-to-point benchmarking techniques do not work for MPI Partitioned
- ► No production application uses MPI Partitioned
 - ▶ How can we discover possible candidates for porting?

- ► Commonly used benchmarks do not support MPI Partitioned
 - Sandia Micro Benchmarks (SMB)
 - OSU Micro Benchmarks (OSU)
 - Intel MPI Benchmarks (IMB)
- Traditional point-to-point benchmarking techniques do not work for MPI Partitioned
- No production application uses MPI Partitioned
 - How can we discover possible candidates for porting?

Research Questions

Can we design an MPI Partitioned Micro-benchmark to address the following:

- ► Commonly used benchmarks do not support MPI Partitioned
 - Sandia Micro Benchmarks (SMB)
 - OSU Micro Benchmarks (OSU)
 - Intel MPI Benchmarks (IMB)
- Traditional point-to-point benchmarking techniques do not work for MPI Partitioned
- No production application uses MPI Partitioned
 - ▶ How can we discover possible candidates for porting?

Research Questions

Can we design an MPI Partitioned Micro-benchmark to address the following:

► How can we understand the behaviour and performance of MPI Partitioned?

- ► Commonly used benchmarks do not support MPI Partitioned
 - Sandia Micro Benchmarks (SMB)
 - OSU Micro Benchmarks (OSU)
 - Intel MPI Benchmarks (IMB)
- Traditional point-to-point benchmarking techniques do not work for MPI Partitioned
- No production application uses MPI Partitioned
 - How can we discover possible candidates for porting?

Research Questions

Can we design an MPI Partitioned Micro-benchmark to address the following:

- ▶ How can we understand the behaviour and performance of MPI Partitioned?
- ▶ How could existing applications benefit from this new programming model?

- ► Commonly used benchmarks do not support MPI Partitioned
 - Sandia Micro Benchmarks (SMB)
 - OSU Micro Benchmarks (OSU)
 - Intel MPI Benchmarks (IMB)
- Traditional point-to-point benchmarking techniques do not work for MPI Partitioned
- No production application uses MPI Partitioned
 - ▶ How can we discover possible candidates for porting?

Research Questions

Can we design an MPI Partitioned Micro-benchmark to address the following:

- ► How can we understand the behaviour and performance of MPI Partitioned?
- ▶ How could existing applications benefit from this new programming model?
- ▶ What are appropriate partition sizes for application developers to use?

Experiment Setup

- Niagara Supercomputer at SciNet¹
 - > 2x 20 Core Intel Skylake at 2.4GHz
 - EDR InfiniBand Network
 - GNU/Linux CentOS 7.6
 - Open MPI (master branch)
 - ▶ UCX v1.11.0
 - ► MPIPCL

¹SciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario; Ontario Research Fund - Research Excellence; and the University of Toronto This research was enabled in part by support provided by the Digital Research Alliance of Canada PPRL/CEASER BIL

Overhead

• What is the cost of using MPI Partitioned?

Overhead

- What is the cost of using MPI Partitioned?
 - We measure each individual data transfer
 - Compare it to MPI Point-to-Point

$$Overhead = \frac{t_{part}}{t_{pt2pt}}$$

Overhead

• What is the cost of using MPI Partitioned?

- We measure each individual data transfer
- Compare it to MPI Point-to-Point

$$Overhead = \frac{t_{part}}{t_{pt2pt}}$$

Overhead Results

(a) Cold Cache

(b) Hot Cache

Overhead of Partitioned Point-to-Point Communication Relative to Point-to-Point Communication for 10ms of Compute

Overhead Results

Overhead of Partitioned Point-to-Point Communication Relative to Point-to-Point Communication for 10ms of Compute

Overhead Results

- Partition count correlates with overhead
- Overheads mostly impact small messages

Overhead of Partitioned Point-to-Point Communication Relative to Point-to-Point Communication for 10ms of Compute

Perceived Bandwidth

What would be the required network bandwidth for MPI Point-to-Point to perform the same as MPI Partitioned?

Perceived Bandwidth

What would be the required network bandwidth for MPI Point-to-Point to perform the same as MPI Partitioned?

Perceived Bandwidth =
$$\frac{m}{t_{part_last}}$$

Perceived Bandwidth

What would be the required network bandwidth for MPI Point-to-Point to perform the same as MPI Partitioned?

Perceived Bandwidth = $\frac{m}{t_{part_last}}$

Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform Noise and a Hot Cache for Different Noise and Compute Amounts

Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform Noise and a Hot Cache for Different Noise and Compute Amounts

► With 0% noise, we see our traditional bandwidth curve

Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform Noise and a Hot Cache for Different Noise and Compute Amounts

- With 0% noise, we see our traditional bandwidth curve
- Peak bandwidth is obtained for medium sized messages

Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform Noise and a Hot Cache for Different Noise and Compute Amounts

- With 0% noise, we see our traditional bandwidth curve
- Peak bandwidth is obtained for medium sized messages
- Actual network bandwidth is saturated for large messages, thus perceived bandwidth drops

 Sweep3D communication pattern has lots of dependencies

- Sweep3D communication pattern has lots of dependencies
- Generally, multi-threading performs better than single threaded

- Sweep3D communication pattern has lots of dependencies
- Generally, multi-threading performs better than single threaded
- The MPI Partition implementation used in this work is built upon MPI Send/Recv

- Sweep3D communication pattern has lots of dependencies
- Generally, multi-threading performs better than single threaded
- ► The MPI Partition implementation used in this work is built upon MPI Send/Recv
 - Therefore minimal difference for most message sizes

- Sweep3D communication pattern has lots of dependencies
- Generally, multi-threading performs better than single threaded
- The MPI Partition implementation used in this work is built upon MPI Send/Recv
 - Therefore minimal difference for most message sizes
- Up to 15.1x higher throughput for large message sizes

Potential Application Improvements

Expected Speedup From Porting SNAP-C to MPI Partitioned

Potential Application Improvements

 The Sweep3D communication pattern showed potential for if it were ported to MPI Partitioned

Expected Speedup From Porting SNAP-C to MPI Partitioned

Potential Application Improvements

- The Sweep3D communication pattern showed potential for if it were ported to MPI Partitioned
- SNAP uses a Sweep3D communication
 - We profiled SNAP's communication
 - Projected the potential speedup

Expected Speedup From Porting SNAP-C to MPI Partitioned

Benchmarking for MPI-Based Deep Learning

- Benchmarking for MPI-Based Deep Learning
 - Deep Learning workloads use MPI_Allreduce collective with large messages extensively

- Benchmarking for MPI-Based Deep Learning
 - Deep Learning workloads use MPI_Allreduce collective with large messages extensively
 - > We proposed an intra-socket multi-path point-to-point MPI collective

- Benchmarking for MPI-Based Deep Learning
 - Deep Learning workloads use MPI_Allreduce collective with large messages extensively
 - > We proposed an intra-socket multi-path point-to-point MPI collective
 - ▶ Evaluated with different benchmarks for each layer of the software stack

- Benchmarking for MPI-Based Deep Learning
 - Deep Learning workloads use MPI_Allreduce collective with large messages extensively
 - > We proposed an intra-socket multi-path point-to-point MPI collective
 - Evaluated with different benchmarks for each layer of the software stack
 - ▶ For Deep Learning applications we see up to 3.42x speedup

- Benchmarking for MPI-Based Deep Learning
 - Deep Learning workloads use MPI_Allreduce collective with large messages extensively
 - > We proposed an intra-socket multi-path point-to-point MPI collective
 - Evaluated with different benchmarks for each layer of the software stack
 - ▶ For Deep Learning applications we see up to 3.42x speedup
- Benchmarking for MPI-Partitioned Communication

- Benchmarking for MPI-Based Deep Learning
 - Deep Learning workloads use MPI_Allreduce collective with large messages extensively
 - > We proposed an intra-socket multi-path point-to-point MPI collective
 - Evaluated with different benchmarks for each layer of the software stack
 - ▶ For Deep Learning applications we see up to 3.42x speedup
- Benchmarking for MPI-Partitioned Communication
 - ▶ We provide the first MPI Partitioned Micro-Benchmark Suite

- Benchmarking for MPI-Based Deep Learning
 - Deep Learning workloads use MPI_Allreduce collective with large messages extensively
 - > We proposed an intra-socket multi-path point-to-point MPI collective
 - Evaluated with different benchmarks for each layer of the software stack
 - ▶ For Deep Learning applications we see up to 3.42x speedup
- Benchmarking for MPI-Partitioned Communication
 - We provide the first MPI Partitioned Micro-Benchmark Suite
 - Showed what communication patterns could benefit from MPI Partitioned

- Benchmarking for MPI-Based Deep Learning
 - Deep Learning workloads use MPI_Allreduce collective with large messages extensively
 - > We proposed an intra-socket multi-path point-to-point MPI collective
 - Evaluated with different benchmarks for each layer of the software stack
 - ▶ For Deep Learning applications we see up to 3.42x speedup
- Benchmarking for MPI-Partitioned Communication
 - We provide the first MPI Partitioned Micro-Benchmark Suite
 - > Showed what communication patterns could benefit from MPI Partitioned
 - Analyzed MPI Partitioned with a range of different metrics

- Benchmarking for MPI-Based Deep Learning
 - Deep Learning workloads use MPI_Allreduce collective with large messages extensively
 - > We proposed an intra-socket multi-path point-to-point MPI collective
 - Evaluated with different benchmarks for each layer of the software stack
 - ▶ For Deep Learning applications we see up to 3.42x speedup
- Benchmarking for MPI-Partitioned Communication
 - We provide the first MPI Partitioned Micro-Benchmark Suite
 - > Showed what communication patterns could benefit from MPI Partitioned
 - Analyzed MPI Partitioned with a range of different metrics

Future Work

- Benchmarking for MPI-Based Deep Learning
 - Deep Learning workloads use MPI_Allreduce collective with large messages extensively
 - > We proposed an intra-socket multi-path point-to-point MPI collective
 - Evaluated with different benchmarks for each layer of the software stack
 - ▶ For Deep Learning applications we see up to 3.42x speedup
- Benchmarking for MPI-Partitioned Communication
 - We provide the first MPI Partitioned Micro-Benchmark Suite
 - > Showed what communication patterns could benefit from MPI Partitioned
 - Analyzed MPI Partitioned with a range of different metrics

Future Work

Compare across different MPI implementations

- Benchmarking for MPI-Based Deep Learning
 - Deep Learning workloads use MPI_Allreduce collective with large messages extensively
 - > We proposed an intra-socket multi-path point-to-point MPI collective
 - Evaluated with different benchmarks for each layer of the software stack
 - ▶ For Deep Learning applications we see up to 3.42x speedup
- Benchmarking for MPI-Partitioned Communication
 - We provide the first MPI Partitioned Micro-Benchmark Suite
 - > Showed what communication patterns could benefit from MPI Partitioned
 - Analyzed MPI Partitioned with a range of different metrics

Future Work

- Compare across different MPI implementations
- Porting Applications to MPI Partitioned based upon benchmarking results

- Benchmarking for MPI-Based Deep Learning
 - Deep Learning workloads use MPI_Allreduce collective with large messages extensively
 - ▶ We proposed an intra-socket multi-path point-to-point MPI collective
 - Evaluated with different benchmarks for each layer of the software stack
 - ▶ For Deep Learning applications we see up to 3.42x speedup
- Benchmarking for MPI-Partitioned Communication
 - We provide the first MPI Partitioned Micro-Benchmark Suite
 - > Showed what communication patterns could benefit from MPI Partitioned
 - Analyzed MPI Partitioned with a range of different metrics

Future Work

- Compare across different MPI implementations
- Porting Applications to MPI Partitioned based upon benchmarking results
- MPI Partitioned Collectives

Thank You!

Acknowledgements

Digital Research Alliance of Canada

Alliance de recherche numérique du Canada

- Y. H. Temuçin, A. Sojoodi, P. Alizadeh, and A. Afsahi, "Efficient Multi-Path NVLink/PCIe-Aware UCX based Collective Communication for Deep Learning," in 2021 IEEE Symposium on High-Performance Interconnects (HOTI), 2021, pp. 25–34.
- Y. H. Temuçin, A. H. Sojoodi, P. Alizadeh, B. Kitor, and A. Afsahi, "Accelerating Deep Learning Using Interconnect-Aware UCX Communication for MPI Collectives," *IEEE Micro*, vol. 42, no. 2, pp. 68–76, 2022.
- Y. H. Temucin, R. E. Grant, and A. Afsahi, "Micro-Benchmarking MPI Partitioned Point-to-Point Communication," in *Proceedings of the 51st International Conference on Parallel Processing*, ser. ICPP '22. New York, NY, USA: Association for Computing Machinery, 2023. [Online]. Available: https://doi.org/10.1145/3545008.3545088