f-‘ — Ueen’s

Benchmarking MPI for Deep Learning and HPC Workloads

Yiltan Hassan Temugin

Parallel Processing Research Laboratory (PPRL)
Computing At Extreme Scale Advanced Research Laboratory (CEASER)
Department of Electrical and Computer Engineering
Queen’s University, Canada

Benchmarking in the Data Center: Expanding to the Cloud
Febuary 25 2023

Outline

Introduction
Open MPI + UCX

Benchmarking for MPI-Based Deep Learning
RMA and Collective Communication Design
Micro-Benchmarks
Application Results

Benchmarking for MPI-Partitioned Communication
MPI Partitioned Point-to-Point Communication
Overhead
Perceived Bandwidth
Sweep3D Communication Pattern

Conclusion And Future Work

PPRL / CEASER BID 23

1/26

Introduction

» HPC is used to solve large complex problems in many domains

Communication is one of the main bottlenecks in applications
There has been a recent popularity of systems with accelerators

PPRL / CEASER BID "23 2/26

Introduction

» HPC is used to solve large complex problems in many domains
Communication is one of the main bottlenecks in applications
There has been a recent popularity of systems with accelerators
» The Message Passing Interface (MPI)

Popular parallel programming model in HPC
Provides multiple communication APIs
» Point-to-point
» Partitioned point-to-point
» RMA
» Collective Communication (MPI_Allreduce, MPI_Bcast, etc.)

PPRL / CEASER BID "23

Introduction

» HPC is used to solve large complex problems in many domains
Communication is one of the main bottlenecks in applications
There has been a recent popularity of systems with accelerators
» The Message Passing Interface (MPI)

Popular parallel programming model in HPC
Provides multiple communication APIs
» Point-to-point
» Partitioned point-to-point
» RMA
» Collective Communication (MPI_Allreduce, MPI_Bcast, etc.)

» MPI based Deep Learning on HPC systems

As the complexity of DL models grow we move towards using the aggregate
power of HPC systems

PPRL / CEASER BID "23

Open MPT + UCX

» UCX provides abstract communication
primitives to best utilise hardware
Point-to-point implemented upon RMA
Put/Get operations

HPC and DL Applications

/

Queenss

ERSITY

Open MPI
| COLL | PMLUCX
uUcx
| ucP || uct | ucs

PPRL / CEASER

BID ‘23

3/26

Open MPT + UCX

» UCX provides abstract communication
primitives to best utilise hardware
Point-to-point implemented upon RMA
Put/Get operations
» Open MPI is an open source MPI
implementation
Point-to-point communication directly
relies on UCX for data transfers
Collective communication are internally
built with point-to-point primitives

PPRL / CEASER

HPC and DL Applications

Open MPI
COLL | PMLUCX
uUcx
UcP || uct | ucs

BID "23

Open MPT + UCX

» UCX provides abstract communication
primitives to best utilise hardware

Point-to-point implemented upon RMA
Put/Get operations

» Open MPI is an open source MPI
implementation
Point-to-point communication directly
relies on UCX for data transfers
Collective communication are internally
built with point-to-point primitives

HPC and DL Applications

Open MPI

| COLL | PMLUCX |
uUcx

| ucP || uct || ucs |

Research Goals

» Improve the performance of GPU MPI communication for Deep Learning

» Obtain a better understanding of the MPI Partitioned Interface

PPRL / CEASER

BID “23 3/26

Benchmarking for MPI-Based
Deep Learning

PPRL / CEASER BID ‘23 4/26

MPI-based Deep Learning @

100 | mmm MPI_Allreduce (CPU)
s MPI_Allreduce (GPU)
mmm Other

» Distributed Deep Learning using Horovod is ©
possible with models from:

60

40

Percentage of Run-time

S 2 8 o 2 =2 &% % © 9 5
w =] n o~ © o 2 b ~ — o
8 % £ 3 $ 8 8B 9 9 %
= 3 9 s © © = =z © O &
v z z =z z z E3 5] > >]
e 8 % ¢ 8 § 2 3 =
¢ & ¢ ¢ ¢ 8
§ § 8 g
=] o =]
Model

Impact of MPI_Allreduce on a
single IBM AC922 node

PPRL / CEASER BID 23 5/26

MPI-based Deep Learning

» Distributed Deep Learning using Horovod is
possible with models from:
TensorFlow
PyTorch
MXNet

PPRL / CEASER

Percentage of Run-time

100 | mmm MPI_Allreduce (CPU)
s MPI_Allreduce (GPU)
mmm Other

80

60

40

S 2 8 o 2 =2 &% % © 9 5
w =] n o~ © o 2 b ~ — o
8 % £ 3 $ 8 8B 9 9 %
= 3 9 s © © = =z © O &
v z z =z z z E3 5] > >]
e 8 % ¢ 8 § 2 3 =
¢ & ¢ ¢ ¢ 8
§ § 8 g
=] o =]
Model

Impact of MPI_Allreduce on a
single IBM AC922 node

BID 23

5/26

MPI-based Deep Learning

» Distributed Deep Learning using Horovod is
possible with models from:
TensorFlow
PyTorch
MXNet
» Horovod uses the data-parallel training
method using MPI_Allreduce

PPRL / CEASER

Percentage of Run-time

"
=3
S

mmm MPI_Allreduce (CPU)
s MPI_Allreduce (GPU)
mmm Other

@
S

Y
3

IS
S

N
1)

)

VGG16
VGG19

P
e
2
I
:
T 3
3
H

ResNet152
DenseNet121
DenseNet169

MobileNet
MobileNetv2
Xception

2 DenseNet201

4

el

Impact of MPI_Allreduce on a
single IBM AC922 node

BID 23

5/26

MPI-based Deep Learning

» Distributed Deep Learning using Horovod is
possible with models from:
TensorFlow
PyTorch
MXNet
» Horovod uses the data-parallel training
method using MPI_Allreduce

17-83% of training time was spent in
MPI_Allreduce

PPRL / CEASER

Percentage of Run-time

"
=3
S

mmm MPI_Allreduce (CPU)
s MPI_Allreduce (GPU)
mmm Other

@
S

Y
3

IS
S

N
1)

)

VGG16
VGG19

P
e
2
I
:
T 3
3
H

ResNet152
DenseNet121
DenseNet169

MobileNet
MobileNetv2
Xception

2 DenseNet201

4

el

Impact of MPI_Allreduce on a
single IBM AC922 node

BID 23

5/26

MPI-based Deep Learning

» Distributed Deep Learning using Horovod is
possible with models from:
TensorFlow
PyTorch
MXNet

» Horovod uses the data-parallel training
method using MPI_Allreduce

17-83% of training time was spent in
MPI_Allreduce

Up to 80% of runtime was spent in a GPU
based MPI_Allreduce

PPRL / CEASER

Percentage of Run-time

"
=3
S

mmm MPI_Allreduce (CPU)
s MPI_Allreduce (GPU)
mmm Other

©
S

Y
3

IS
S

N
1)

)

VGG16
VGG19

P
e
2
I
:
T 3
3
H

ResNet152
DenseNet121
DenseNet169

MobileNet
MobileNetv2
Xception

2 DenseNet201

4

el

Impact of MPI_Allreduce on a
single IBM AC922 node

BID 23

5/26

Multi-Path Copy Motivation

» MPI sends data directly from GPUj, to GPU;

Uses a zero copy put operation in UCX
(As shown by the solid red line)

PPRL / CEASER

GPU

0

GPU

1

— NVLink (25GB/s)

BID 23

6/26

Multi-Path Copy Motivation

» MPI sends data directly from GPUj, to GPU;

Uses a zero copy put operation in UCX
(As shown by the solid red line)

» Six idle NVLinks connected to the host

PPRL / CEASER

GPU GPU

0 1

— NVLink (25GB/s)

BID 23 6/26

Multi-Path Copy Motivation

» MPI sends data directly from GPUj, to GPU;

Uses a zero copy put operation in UCX
(As shown by the solid red line)

» Six idle NVLinks connected to the host
» A large amount of unused potential bandwidth

PPRL / CEASER

GPU GPU

0 1

— NVLink (25GB/s)

BID 23 6/26

Multi-Path Copy Motivation @

Memory
» MPI sends data directly from GPUj, to GPU; '."] “‘_
Uses a zero copy put operation in UCX cpU)
(As shown by the solid red line) 0
» Six idle NVLinks connected to the host /
» A large amount of unused potential bandwidth GPU, GPU,

— NVLink (25GB/s)

Research Question

Can we design a mechanism to use all communication paths?

PPRL / CEASER BID ‘23 6/26

Multi-Path Copy Motivation

» We used the ucx_perftest
micro-benchmarks to assess the
viability of our design idea

PPRL / CEASER

Bandwidth (MB/s)

70000

60000

50000

40000

30000

20000

10000

—— Default (P2P)

~—+— Host Staged Copy (1 streams)
—— Host Staged Copy (2 streams)
—— Host Staged Copy (4 streams)
—— Host Staged Copy (8 streams)

e < G Y N Oy Xy g SH Yy & Yo, N Oy Ly g Sy Yy
% % oS g o Y M U 6, %, % a0, %, ©

Message Size (B)

BID ‘23 7 /26

Multi-Path Copy Motivation

» We used the ucx_perftest
micro-benchmarks to assess the
viability of our design idea

» Preliminary investigation showed:

PPRL / CEASER

Bandwidth (MB/s)

70000

60000

50000

40000

30000

20000

10000

—— Default (P2P)
~—+— Host Staged Copy (1 streams)
—— Host Staged Copy (2 streams)
—— Host Staged Copy (4 streams)
—— Host Staged Copy (8 streams)

D N N A R A N
%t % oS g o Y Y U 6, % ¥, %%, ¢

Message Size (B)

BID ‘23 7 /26

Multi-Path Copy Motivation

» We used the ucx_perftest
micro-benchmarks to assess the
viability of our design idea

» Preliminary investigation showed:

Stream count impacts peak
bandwidth for the host-path

PPRL / CEASER

Bandwidth (MB/s)

70000

60000

50000

40000

30000

20000

10000

—— Default (P2P)
~}— Host Staged Copy (1 streams)
—— Host Staged Copy (2 streams)
—— Host Staged Copy (4 streams)
—— Host Staged Copy (8 streams)

Y S G G e, D O oo S Sol U T B Y B O Uo S Syl ¥
A R R A R B B e A R A

Message Size (B)

BID ‘23 7 /26

Multi-Path Copy Motivation

» We used the ucx_perftest
micro-benchmarks to assess the
viability of our design idea

» Preliminary investigation showed:

Stream count impacts peak
bandwidth for the host-path
Stream count is dependent on
message size

PPRL / CEASER

Bandwidth (MB/s)

70000

60000

50000

40000

30000

20000

10000

—+ Default (P2P)

~}— Host Staged Copy (1 streams)
—— Host Staged Copy (2 streams)
—— Host Staged Copy (4 streams)
—4— Host Staged Copy (8 streams)

Y S G G e, D O oo S Sol U T B Y B O Uo S Syl ¥
A R R A R B B e A R A

Message Size (B)

BID ‘23 7 /26

Multi-Path Copy Motivation @

700009 —— pefault (P2P)

~}— Host Staged Copy (1 streams)

—— Host Staged Copy (2 streams)

» We used the ucx_perftest 800001 4~ oststaged Copy (@ streams)
—}— Host Staged Copy (8 streams)
micro-benchmarks to assess the so000
viability of our design idea
» Preliminary investigation showed:
Stream count impacts peak
bandwidth for the host-path 20000
Stream count is dependent on
message size
Up to 53GB/s of unused ’

Y e Y G e 0, Oy U S S Y n Y, S Ve, D, O o e Sl ¥
1 R N4 8,5, %2, %% s 2 o
bandwidth N A A A S A A AN

Message Size (B)

40000

30000

Bandwidth (MB/s)

10000

PPRL / CEASER BID ‘23 7 /26

Hierarchical Allreduce with Multi-Path Copy @

» The proposed MPI_Allreduce
algorithm has three steps:

PPRL / CEASER

=) =a =) =3

o, o n, o,

<) CIINC) 9
s NV Link (25GB/S) eresessen X-Bus (32GB/s)

PCle Gen4 (32GB/s)

BID “23 8/26

Hierarchical Allreduce with Multi-Path Copy @

» The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce

PPRL / CEASER

GPU

e NVLink (25GB/8) seeseveeen X-Bus (32GB/s)
PCle Gen4 (32GB/s)

BID “23 8/26

Hierarchical Allreduce with Multi-Path Copy @

» The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and
reduce

PPRL / CEASER

Memory Memory
...........................
(47N 147\

5 5o =)

n, 0, [N ,

O O O)
= NVLink (25GB/s) wwweee: X-Bus (32GB/s)

PCle Gen4 (32GB/s)

BID “23 8/26

Hierarchical Allreduce with Multi-Path Copy @

» The proposed MPI_Allreduce
algorithm has three steps:
1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and
reduce
3. Intra-socket multi-path broadcast

PPRL / CEASER

GPU,

e NVLink (25GB/8) seeseveeen X-Bus (32GB/s)
PCle Gen4 (32GB/s)

BID “23 8/26

Hierarchical Allreduce with Multi-Path Copy

» The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce

2. Inter-socket leaders exchange and
reduce

3. Intra-socket multi-path broadcast

» Design Optimisations

PPRL / CEASER

e NVLink (25GB/8) seeseveeen X-Bus (32GB/s)

PCle Gen4 (32GB/s)

BID ‘23

8/26

Hierarchical Allreduce with Multi-Path Copy

» The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce
2. Inter-socket leaders exchange and
reduce
3. Intra-socket multi-path broadcast
» Design Optimisations
Steps 1-3 are pipelined

PPRL / CEASER

e NVLink (25GB/8) seeseveeen X-Bus (32GB/s)

PCle Gen4 (32GB/s)

BID ‘23

8/26

Hierarchical Allreduce with Multi-Path Copy

» The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce

2. Inter-socket leaders exchange and
reduce

3. Intra-socket multi-path broadcast

» Design Optimisations
Steps 1-3 are pipelined
Inter-socket communication

dynamically switches between
PCle and NVLink == NVLink (256GB/s) s X-Bus (32GB/s)

PCle Gen4 (32GB/s)

PPRL / CEASER BID ‘23 8/26

Hierarchical Allreduce with Multi-Path Copy

» The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce

2. Inter-socket leaders exchange and
reduce

3. Intra-socket multi-path broadcast

» Design Optimisations
Steps 1-3 are pipelined
Inter-socket communication

dynamically switches between
PCle and NVLink == NVLink (26GB/s) s X-Bus (32GB/s)

PCle Gen4 (32GB/s)

Dynamically send data using
Multi-path or Peer-to-Peer copies
via the host links

PPRL / CEASER BID “23 8/26

Hierarchical Allreduce with Multi-Path Copy

» The proposed MPI_Allreduce
algorithm has three steps:

1. Intra-socket multi-path reduce

2. Inter-socket leaders exchange and
reduce

3. Intra-socket multi-path broadcast

» Design Optimisations

Steps 1-3 are pipelined
Inter-socket communication
dynamically switches between
PCle and NVLink
Dynamically send data using

Multi-path or Peer-to-Peer copies
via the host links

» Minimise intra-socket congestion

PPRL / CEASER

e NVLink (25GB/8) seeseveeen X-Bus (32GB/s)

PCle Gen4 (32GB/s)

BID “23

8/26

Experimental Setup

» Hardware:
IBM AC922
32 Core, 128 Thread Power9 CPU
256GB RAM
Four V100-SMX2-32GB

PPRL / CEASER

Queens

E¢)

RSITY

Schet

ADVANCED RESEARCH COMPUTING at the UNIVERSITY OF TORONTO

BID ‘23

9/26

Experimental Setup @

» Hardware:
IBM AC922
32 Core, 128 Thread Power9 CPU
256GB RAM

Four V100-SMX2-32GB
» Software:

Open MPT 4.0.4rc2

UCX 1.8.0

Open MPI + HPC-X v2.7

ADVANCED RESEARCH COMPUTING at the UNIVERSITY OF TORONTO
Spectrum-MPI 10.3.1

MVAPICH2-GDR 2.3.5
NCCL 25.6

Horovod 0.20.3
TensorFlow 1.15.2

PPRL / CEASER BID ‘23 9/26

UCX Put and MPI Point-to-Point Results @

Bandwidth (MB/s)

120000 4

100000 4

80000 1

60000 1

40000 -

20000

— ucx
—— UCX + Multi-Path Copy

G S T G e S Oy 25 24 2 S, %, G, 6, 0 O Sp.
ot % e D ,:;\)/94,4,4,&9 25 %
1»4»4-0, CACH 8, 6, %,

Message Size (B)

UCX Put Bandwidth

PPRL / CEASER

Bandwidth (MB/s)

140000

120000 4

100000

80000 q

60000

40000 q

20000

—— Spectrum MPI
—+— Open MPI + UCX

—— Open MPI + UCX + Multi-Path Copy
—— MVAPICH2-GDR

z,f_ ef P ofzo} e{_ sqf fgf,e J,,, e,,, 4, ,7 Yy, 5 ,,,’e@:é‘dy(%’o

Message Size (B)

MPI Unidirectional Bandwidth

BID 23 10 / 26

UCX Put and MPI Point-to-Point Results @

Bandwidth (MB/s)

120000 4

100000 4

80000 1

60000 1

40000 -

20000

— ucx
—— UCX + Multi-Path Copy

o Y S 2@ 1976’1 o <
S F % o <552, 5,2, %y %20 <5,
ff’f‘@ff@/yd"”ﬂ”fr@"f@@%@

%

Message Size (B)

UCX Put Bandwidth

PPRL / CEASER

Bandwidth (MB/s)

140000

120000 4

100000

80000 q

60000

40000 q

20000

—— Spectrum MPI
—+— Open MPI + UCX

—— Open MPI + UCX + Multi-Path Copy
—— MVAPICH2-GDR

z,f_ ef P ofzo} e{_ sqf fgf,e J,,, e,,, 4, ,7 Yy, 5 ,,,’e@:é‘dy(%’o

Message Size (B)

MPI Unidirectional Bandwidth

BID 23 10 / 26

UCX Put and MPI Point-to-Point Results

Bandwidth (MB/s)

120000

100000

80000

60000

40000

20000

— ucx
—— UCX + Multi-Path Copy

G S T G 2y B 6, 2 % o o T G s,
ffffc‘{,effe%tf@@@@@%&,a,

PR Y
‘D I 1 (ol
%%

Message Size (B)

UCX Put Bandwidth

PPRL / CEASER

Bandwidth (MB/s)

140000

120000 4

100000

80000 q

60000

40000 q

20000

— Spectrum MPI
—+— Open MPI + UCX

—— Open MPI + UCX + Multi-Path Copy
— MVAPICH2-GDR

/

z,f_ ef 5 ofzo} e{_ sqf fgf,e J,,, e,,, 4, 4’ Yy, 5 ,,,’e@,:’é‘dy(%’o

Message Size (B)

MPI Unidirectional Bandwidth

BID 23

10 / 26

MPI_Allreduce OSU Microbenchmark Results

108
Spectrum MPI

Open MPI + UCX

Open MPI + HPC-X

MVAPICH2-GDR

NCCL

mmm Allreduce with GPU Kernel Reduction

W Hierarchical Allreduce with Multi-Path Copy

=
<

latency (us)

104

< < 3 <
& S 04 G
% %

Message Size (B)

MPI_Allreduce latency on 4 GPUs for very
large message sizes

PPRL / CEASER

BID 23

11/26

MPI_Allreduce OSU Microbenchmark Results @

108
= Spectrum MPI

I Open MPI + UCX

mmm Open MPI + HPC-X

N MVAPICH2-GDR

B NCCL

mmm Allreduce with GPU Kernel Reduction

W Hierarchical Allreduce with Multi-Path Copy

=
<

» Much lower latency than Open MPI
+ HPC-X

latency (us)

b4 <
S 35
%

Message Size (B)

MPI_Allreduce latency on 4 GPUs for very
large message sizes

PPRL / CEASER BID 23 11/ 26

MPI_Allreduce OSU Microbenchmark Results @

108
= Spectrum MPI

I Open MPI + UCX

== Open MPI + HPC-X

N MVAPICH2-GDR

B NCCL

mmm Allreduce with GPU Kernel Reduction

W Hierarchical Allreduce with Multi-Path Copy

10°

latency (us)

< < 3 <
& S 04 G
% %

Message Size (B)

MPI_Allreduce latency on 4 GPUs for very
large message sizes

PPRL / CEASER

» Much lower latency than Open MPI
+ HPC-X

» At 1GB we see speedup of:

BID 23 11 /26

MPI_Allreduce OSU Microbenchmark Results @

108
= Spectrum MPI

I Open MPI + UCX

== Open MPI + HPC-X

N MVAPICH2-GDR

B NCCL

mmm Allreduce with GPU Kernel Reduction

W Hierarchical Allreduce with Multi-Path Copy

=
<

» Much lower latency than Open MPI
+ HPC-X
» At 1GB we see speedup of:

1.47x over MVAPICH2-GDR
1.38x over NCCL

latency (us)

< < 3 <
& S 04 G
% %

Message Size (B)

MPI_Allreduce latency on 4 GPUs for very
large message sizes

PPRL / CEASER BID 23 11 /26

Application Results

Throughput (img/sec)

» ResNet50 up to 1.56x speedup

1200

1000

800

600

Spectrum MPI

Open MPI + UCX

Open MPI + HPC-X

MVAPICH2-GDR

NCCL

Allreduce with GPU Kernel Reduction
Hierarchical Allreduce with Multi-Path Copy

400

200

64MB 128MB 256MB 512MB 1GB
HOROVOD_FUSION_THRESHOLD

Synthetic Horovod + TensorFlow
benchmarks for ResNet50

PPRL / CEASER

Frequency

100 1

80

o
o

401

20 A

Fusion Threashold
64MB
128MB
256MB
512MB
1GB

T T T
6, x5

N4 % S
AL s,
o "% S

'S

S0 S, U, S e, O 6, L
> /9; /7; /7; /7; °‘z) ez 2, <%,
R e 1o Y

MPI_Allreduce GPU Message Sizes

GPU Message Sizes for different
HOROVOD_FUSION_THREASHOLD

BID 23

Gx
% % % ¢

12 / 26

Application Results @

» ResNet50 up to 1.56x speedup =S
» Modifying fusion threshold increases message sizes to 128MB

Fusion Threashold
1200 100{ === 64mB
mmm 128MB
1000 . 256MB
801 mmm 512MB
g > s 1GB
$ 800 g
£ g 60
5 g
2 00 E
H = Spectrum MPI 40
£ 400 == Open MPI + UCX
W= Open MPI| + HPC-X
W= MVAPICH2-GDR 20
200 e NCCL
= Alireduce with GPU Kernel Reduction
W Hierarchical Allreduce with Multi-Path Copy 0 —_—
6, X U S Y <y Y S e D 6, Uy s S Ya
64MB 128MB 256MB 512MB 1GB 7 QR S Y s Ny Yy, X6 VS O R NS Gy G
HOROVOD_FUSION_THRESHOLD 3 ‘943. 0429 “’4‘@ 2 % % % T e 0”7& % ")'90 ¢ e

MPI_Allreduce GPU Message Sizes

Synthetic Horovod + TensorFlow
benchmarks for ResNet50 GPU Message Sizes for different

HOROVOD_FUSION_THREASHOLD

PPRL / CEASER BID 23 12 /26

Benchmarking for MPI-Partitioned
Communication

PPRL / CEASER BID 23 13 /26

MPI Partitioned Point-to-Point Communication !

» MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes

PPRL / CEASER BID 23 14 /26

MPI Partitioned Point-to-Point Communication @

» MPI_Psend_init/MPI_Precv_init is used to

initialize communication between processes Po P
Message matching occurs here

MPI Partitioned does not accept wildcards

MPI_Pready
| Lepresdy |
MPI_Pready [-L| MPI_Pready

PPRL / CEASER BID 23 14 / 26

MPI Partitioned Point-to-Point Communication @

» MPI_Psend_init/MPI_Precv_init is used to

initialize communication between processes Po P
Message matching occurs here

MPI Partitioned does not accept wildcards

» MPI_Start is called to start communication

MPI_Pready
| Lepresdy |
MPI_Pready [-L| MPI_Pready

PPRL / CEASER BID 23 14 / 26

MPI Partitioned Point-to-Point Communication &

» MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
Message matching occurs here
MPI Partitioned does not accept wildcards

» MPI_Start is called to start communication
» A parallel for loop is launched

PPRL / CEASER BID 23 14 / 26

MPI Partitioned Point-to-Point Communication @

» MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
Message matching occurs here
MPI Partitioned does not accept wildcards

» MPI_Start is called to start communication

» A parallel for loop is launched

Work is Computed

Once data is ready, MPI_Pready is called
Optionally, MPI_Parrived to check if
incoming data has arrived

PPRL / CEASER BID 23 14 /26

MPI Partitioned Point-to-Point Communication

MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
Message matching occurs here
MPI Partitioned does not accept wildcards
MPI_Start is called to start communication
A parallel for loop is launched
Work is Computed
Once data is ready, MPI_Pready is called
Optionally, MPI_Parrived to check if
incoming data has arrived
MPI_Waitall is called to complete
communication

PPRL / CEASER

MPI_Psend_init
MP|_Start MP|_Start
MPI_Pi I
_Pready |

! | |
MPI_Parrived
MPI_Pready PI_Pready |

\ MPI_Parrived] | [MPL_Parrived
MPI_Wait

MPI_Precv_init

MPI_Wait

BID "23 14 /26

MPI Partitioned Point-to-Point Communication

MPI_Psend_init/MPI_Precv_init is used to
initialize communication between processes
Message matching occurs here
MPI Partitioned does not accept wildcards
MPI_Start is called to start communication
A parallel for loop is launched
Work is Computed
Once data is ready, MPI_Pready is called
Optionally, MPI_Parrived to check if
incoming data has arrived
MPI_Waitall is called to complete
communication

A good implementation does not have the
serialization issues of MPI Point-to-Point

PPRL / CEASER

MPI_Psend_init
MP|_Start MP|_Start
MPI_Pi I
_Pready |

! | |
MPI_Parrived
MPI_Pready PI_Pready |

\ MPI_Parrived] | [MPL_Parrived
MPI_Wait

MPI_Precv_init

MPI_Wait

BID "23 14 /26

Motivation

» Commonly used benchmarks do not support MPI Partitioned

Sandia Micro Benchmarks (SMB)
OSU Micro Benchmarks (OSU)
Intel MPI Benchmarks (IMB)

PPRL / CEASER

BID 23 15/

Motivation

» Commonly used benchmarks do not support MPI Partitioned

Sandia Micro Benchmarks (SMB)
OSU Micro Benchmarks (OSU)
Intel MPI Benchmarks (IMB)

» Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned

PPRL / CEASER BID 23 15 /26

Motivation

» Commonly used benchmarks do not support MPI Partitioned
Sandia Micro Benchmarks (SMB)
OSU Micro Benchmarks (OSU)
Intel MPI Benchmarks (IMB)
» Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned
» No production application uses MPI Partitioned
How can we discover possible candidates for porting?

PPRL / CEASER BID 23 15/

Motivation o

Queens

» Commonly used benchmarks do not support MPI Partitioned

Sandia Micro Benchmarks (SMB)
OSU Micro Benchmarks (OSU)
Intel MPI Benchmarks (IMB)

» Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned
» No production application uses MPI Partitioned
How can we discover possible candidates for porting?

Research Questions

Can we design an MPI Partitioned Micro-benchmark to address the following:

PPRL / CEASER BID "23 15 /26

Motivation o

Queens

» Commonly used benchmarks do not support MPI Partitioned

Sandia Micro Benchmarks (SMB)
OSU Micro Benchmarks (OSU)
Intel MPI Benchmarks (IMB)

» Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned
» No production application uses MPI Partitioned
How can we discover possible candidates for porting?

Research Questions

Can we design an MPI Partitioned Micro-benchmark to address the following:
» How can we understand the behaviour and performance of MPI Partitioned?

PPRL / CEASER BID 23 15 /26

Motivation

» Commonly used benchmarks do not support MPI Partitioned

Sandia Micro Benchmarks (SMB)
OSU Micro Benchmarks (OSU)
Intel MPI Benchmarks (IMB)

» Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned
» No production application uses MPI Partitioned
How can we discover possible candidates for porting?

Research Questions

Can we design an MPI Partitioned Micro-benchmark to address the following:
» How can we understand the behaviour and performance of MPI Partitioned?
» How could existing applications benefit from this new programming model?

PPRL / CEASER BID 23

Motivation

» Commonly used benchmarks do not support MPI Partitioned

Sandia Micro Benchmarks (SMB)
OSU Micro Benchmarks (OSU)
Intel MPI Benchmarks (IMB)

» Traditional point-to-point benchmarking techniques do not work for MPI
Partitioned
» No production application uses MPI Partitioned
How can we discover possible candidates for porting?

Research Questions

Can we design an MPI Partitioned Micro-benchmark to address the following:
» How can we understand the behaviour and performance of MPI Partitioned?
» How could existing applications benefit from this new programming model?
» What are appropriate partition sizes for application developers to use?

PPRL / CEASER BID "23

Experiment Setup

» Niagara Supercomputer at SciNet!
2x 20 Core Intel Skylake at 2.4GHz
EDR InfiniBand Network
GNU/Linux - CentOS 7.6
Open MPI (master branch)
UCXv1.11.0
MPIPCL

15ciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario;
Ontario Research Fund - Research Excellence; and the University of Toronto This research was
enabled in part by support provided by the Digital Research Alliance of Canada

PPRL / CEASER BID ‘23 16

Overhead @

» What is the cost of using MPI
Partitioned?

PPRL / CEASER BID "23 17 / 26

Overhead

» What is the cost of using MPI
Partitioned?
We measure each individual data
transfer
Compare it to MPI Point-to-Point

PPRL / CEASER BID 23 17 / 26

Overhead

» What is the cost of using MPI

Partitioned? tpurt
o Overhead =
We measure each individual data tpropt
transfer

Compare it to MPI Point-to-Point

Traditional Send Timeline

Threads Fork

Thread #1 Data Transfer | Thread #2 Data Transfer | Thread #3 Data Transfer | Thread #4 Data Transfer

‘Thread Join

tpt2pt

Partitioned Send Timeline
Thread #1 Data Transfer

Thread #2 Data Transfer

Thread #3 Data Transfer

Thread #4 Data Transfer

Threads Fork

part

PPRL / CEASER BID 23 17 / 26

Overhead Results

60

501 # Partitions
— 40} 1 8
=30
: s 4 32
QO 20y

" f—‘\»—_’\w

0 P =

1K 2K 16K 64K 256K 1M 4M 16M G4M 256M
Message Size (B)

(a) Cold Cache

60
50k # Partitions
o — 2 = 16
£ 4 32
O20F
10F
::::::L\v\.*_ _

0C X ; ; n " ; n n n
1K 4K 16K 64K 256K 1M 4M 16M 64M 256M
Message Size (B)

(b) Hot Cache

Overhead of Partitioned Point-to-Point Communication Relative to Point-to-Point
Communication for 10ms of Compute

PPRL / CEASER

Overhead Results

» Partition count correlates with overhead

60 60

501 # Partitions 50k # Partitions
a0l e 1 <38 a0l e 1 e+
e — 2 = 16 g v 2 = 106
=30 {1 =30]
L — 4 32 L a—a 4 32
Saof 1 St]

107 | IUN\M

e o o | 0 f7¢47"’fd—4¥ o |
1K 2K 16K 64K 256K 1M 4M 16M G4M 256M 1K 2K 16K 64K 256K 1M 4M 16M G&M 256M
Message Size (B) Message Size (B)
(a) Cold Cache (b) Hot Cache

Overhead of Partitioned Point-to-Point Communication Relative to Point-to-Point
Communication for 10ms of Compute

PPRL / CEASER

Overhead Results

» Partition count correlates with overhead Ql, ‘

» Overheads mostly impact small messages

60

Overhead
= W e
o [a=) o o o

0
1

Partitions
—e 1 8
—v 2 > 16
— g 32

Message Size (B)

(a) Cold Cache

K 4K 16K 64K 256K 1M 4M 16M G4M 256M

60

501 # Partitions
S0 — 2 = 16
5 — 32
O 201]

10F

(_—

Message Size (B)

(b) Hot Cache

Overhead of Partitioned Point-to-Point Communication Relative to Point-to-Point
Communication for 10ms of Compute

P

PRL / CEASER

BID 23

), . " : " " " " " " 4
1K 4K 16K 64K 256K 1M 4M 16M 64M 256M

Perceived Bandwidth

» What would be the required
network bandwidth for MPI
Point-to-Point to perform the same
as MPI Partitioned?

PPRL / CEASER

Perceived Bandwidth

» What would be the required

. , m
network bandwidth for MPI Perceived Bandwidth =
Point-to-Point to perform the same part last
as MPI Partitioned?

PPRL / CEASER BID 23 19 /26

Perceived Bandwidth @

» What would be the required m
network bandwidth for MPI Perceived Bandwidth = ————
Point-to-Point to perform the same part last
as MPI Partitioned?

Partitioned Send Timeline

Thread #1 Data Transfer ‘

Thread #2 Data Transfer ‘

Thread #3 Data Transfer ‘

Threads Fork

‘ Thread #4 Data Transfer

part_last

| 4

&
<

PPRL / CEASER BID 23 19 /26

Perceived Bandwidth Results @

Partitions ol [P N
o /,
< — \
Partitions 2
—1 — A
= s / 1
/ — — 16 I
) !
— 16
) 3 .
I ST

ITRI0K 61K

T TOM GIN 200
()

1K1K oK o

(a) 10ms Comp with 0% (b) 10ms Comp with 4% () 10ms Comp with 10%
Noise Noise Noise

Partitions

/ Partition

T
el

TN 16N AN 256
o (B)

TR ToR Gk

T oK o T 16 61N 2500
B)

T TN GINZ60T
e (B)

(d) 100ms Comp with 0% (e) 100ms Comp with4% (f) 100ms Comp with 10%
Noise Noise Noise

Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform
Noise and a Hot Cache for Different Noise and Compute Amounts

PPRL / CEASER BID "23 20/ 26

Perceived Bandwidth Results @

/

UNIVERSITY

Partitions

» With 0% noise, we see our
traditional bandwidth curve

1K oK ot 10K ol

(a) 10ms Comp with 0% (b) 10ms Comp with 4% () 10ms Comp with 10%
Noise Noise Noise

T oK o

TR Gk 2 T 10N GIN2560 HiCTRCTOR GIR 256K T
it B) e

it

(d) 100ms Comp with 0% (e) 100ms Comp with 4% (f) 100ms Comp with 10%
Noise Noise Noise

Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform
Noise and a Hot Cache for Different Noise and Compute Amounts

PPRL / CEASER BID "23 20/ 26

Perceived Bandwidth Results

» With 0% noise, we see our | A e 2 ;
traditional bandWIdth curve R IR SRR T 4T Tz TR TR ST T T AT TR 10K SR T T
. . . (a) 10ms Comp with 0% (b) 10ms Comp with 4% () 10ms Comp with 10%
» Peak bandwidth is obtained Nops Nop s N
for medium sized messages
(ss
= 7
J g
R TR SR 250K T 3T o izt iR iR Y ToR ol

(d) 100ms Comp with 0% (e) 100ms Comp with 4% (f) 100ms Comp with 10%
Noise Noise Noise

Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform
Noise and a Hot Cache for Different Noise and Compute Amounts

PPRL / CEASER BID "23 20/ 26

/ 2

Perceived Bandwidth Results

» With 0% noise, we see our
traditional bandwidth curve
. . . (a) 10ms Comp with 0% (b) 10ms Comp with 4% () 10ms Comp with 10%
» Peak bandwidth is obtained Nops Nop s N
for medium sized messages

» Actual network bandwidth
is saturated for large

fiT TR

[

messages, thus perceived AN S
bandwidth drops i T
(d) 100ms Comp with 0% (e) 100ms Comp with 4% (f) 100ms Comp with 10%
Noise Noise Noise

Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform
Noise and a Hot Cache for Different Noise and Compute Amounts

PPRL / CEASER BID "23 20/ 26

Sweep3D Communication Pattern

PPRL / CEASER

= =
o o
B ~

[y
o
o1

Threading Mode
s—e SINGLE
v— MULTIPLE
~— PARTITIONED
iK 64K 1M I6M 256M
Message Size (B)

Throughput (KB/s)
S

[ay
o
S

10!

Sweep3D communication throughput for 16
partitions, 10ms compute, and 4% Single
Noise with a Hot Cache

Sweep3D Communication Pattern

» Sweep3D communication pattern
has lots of dependencies

PPRL / CEASER

107
106,
2
m L
=) 10°
g 104}
=
E , Threading Mode
£ 107 e SINGLE
~ ol v— MULTIPLE
+— PARTITIONED
1 L L L L L
107K GIK M 16M 256M

Message Size (B)

Sweep3D communication throughput for 16
partitions, 10ms compute, and 4% Single
Noise with a Hot Cache

Sweep3D Communication Pattern

107
» Sweep3D communication pattern 1051
has lots of dependencies -
> 105 L
» Generally, multi-threading performs = \
better than single threaded Ea :
b , Threading Mode
=107 e—e SINGLE
= Lol v—v MULTIPLE
+— PARTITIONED
10

K 64K M 16M 256M
Message Size (B)

Sweep3D communication throughput for 16
partitions, 10ms compute, and 4% Single
Noise with a Hot Cache

PPRL / CEASER BID "23 21/26

Sweep3D Communication Pattern

» Sweep3D communication pattern
has lots of dependencies

» Generally, multi-threading performs
better than single threaded

» The MPI Partition implementation

used in this work is built upon MPI
Send/Recv

PPRL / CEASER

Threading Mode

Throughput (KB/s)
2

3L
10 e SINGLE
02l v—v MULTIPLE
+—a PARTITIONED
1 L L L L L
100531 64K ™ T6M 256M

Message Size (B)

Sweep3D communication throughput for 16
partitions, 10ms compute, and 4% Single
Noise with a Hot Cache

BID "23 21/

Sweep3D Communication Pattern

» Sweep3D communication pattern
has lots of dependencies

» Generally, multi-threading performs
better than single threaded

» The MPI Partition implementation

used in this work is built upon MPI
Send/Recv

Therefore minimal difference for
most message sizes

PPRL / CEASER

Threading Mode

Throughput (KB/s)
2

3L
10 e SINGLE
02l v—v MULTIPLE
+—a PARTITIONED
1 L L L L L
100531 64K ™ T6M 256M

Message Size (B)

Sweep3D communication throughput for 16
partitions, 10ms compute, and 4% Single
Noise with a Hot Cache

BID "23 21/

Sweep3D Communication Pattern

» Sweep3D communication pattern
has lots of dependencies

» Generally, multi-threading performs
better than single threaded

» The MPI Partition implementation

used in this work is built upon MPI
Send/Recv

Therefore minimal difference for
most message sizes

» Up to 15.1x higher throughput for
large message sizes

PPRL / CEASER

=
o
=

—_
o
=)

—_
o
T

Throughput (KB/s)
2

Threading Mode
10°F e—e SINGLE
102l +— MULTIPLE
+— PARTITIONED
1 L L L L L
107K 61K M 16M 256M

Message Size (B)

Sweep3D communication throughput for 16
partitions, 10ms compute, and 4% Single
Noise with a Hot Cache

BID "23 21/

Potential Application Improvements

2.03

Speedup

=
o

32/512 64/1K 128/2K 256/4K
Processes/ Threads

Expected Speedup From Porting SNAP-C to
MPI Partitioned

PPRL / CEASER BID "23 22 /26

Potential Application Improvements

2.5

» The Sweep3D communication 20 203
pattern showed potential for if it £1s
were ported to MPI Partitioned 1o
0.5
0.0

2/32 4/64 8/128 16/256 32/512 64/1K 128/2K 256/4K
Processes/ Threads

Expected Speedup From Porting SNAP-C to
MPI Partitioned

PPRL / CEASER BID "23 22 /26

Potential Application Improvements

2.5
» The Sweep3D communication 20 -
pattern showed potential for if it =15
were ported to MPI Partitioned 210
» SNAP uses a Sweep3D o
communication
We profiled SNAP’s 0055 464 8 1zsp}(s 2“70‘3%2];12[‘04 1K 128)2K 256,/4K
communication o e
Projected the potential speedup Expected Speedup From Porting SNAP-C to

MPI Partitioned

PPRL / CEASER BID "23 22 /26

Conclusion And Future Work @

» Benchmarking for MPI-Based Deep Learning

PPRL / CEASER BID "23 23 /26

Conclusion And Future Work

. . Queens
» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively

PPRL / CEASER BID "23 23 /26

Conclusion And Future Work

» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively
We proposed an intra-socket multi-path point-to-point MPI collective

PPRL / CEASER BID "23 23 /26

Conclusion And Future Work

» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively
We proposed an intra-socket multi-path point-to-point MPI collective

» Evaluated with different benchmarks for each layer of the software stack

PPRL / CEASER BID "23 23 /26

Conclusion And Future Work

» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively
We proposed an intra-socket multi-path point-to-point MPI collective

» Evaluated with different benchmarks for each layer of the software stack
» For Deep Learning applications we see up to 3.42x speedup

PPRL / CEASER BID "23 23 /26

Conclusion And Future Work

» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively
We proposed an intra-socket multi-path point-to-point MPI collective

» Evaluated with different benchmarks for each layer of the software stack
» For Deep Learning applications we see up to 3.42x speedup

» Benchmarking for MPI-Partitioned Communication

PPRL / CEASER BID 23

Conclusion And Future Work

» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively
We proposed an intra-socket multi-path point-to-point MPI collective

» Evaluated with different benchmarks for each layer of the software stack
» For Deep Learning applications we see up to 3.42x speedup

» Benchmarking for MPI-Partitioned Communication
We provide the first MPI Partitioned Micro-Benchmark Suite

PPRL / CEASER BID "23 23 /26

Conclusion And Future Work

» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively
We proposed an intra-socket multi-path point-to-point MPI collective

» Evaluated with different benchmarks for each layer of the software stack
» For Deep Learning applications we see up to 3.42x speedup

» Benchmarking for MPI-Partitioned Communication

We provide the first MPI Partitioned Micro-Benchmark Suite
Showed what communication patterns could benefit from MPI Partitioned

PPRL / CEASER BID "23

Conclusion And Future Work

» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively
We proposed an intra-socket multi-path point-to-point MPI collective

» Evaluated with different benchmarks for each layer of the software stack
» For Deep Learning applications we see up to 3.42x speedup
» Benchmarking for MPI-Partitioned Communication

We provide the first MPI Partitioned Micro-Benchmark Suite
Showed what communication patterns could benefit from MPI Partitioned
Analyzed MPI Partitioned with a range of different metrics

PPRL / CEASER BID "23

Conclusion And Future Work

. . Queens
» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively
We proposed an intra-socket multi-path point-to-point MPI collective

» Evaluated with different benchmarks for each layer of the software stack
» For Deep Learning applications we see up to 3.42x speedup

» Benchmarking for MPI-Partitioned Communication

We provide the first MPI Partitioned Micro-Benchmark Suite
Showed what communication patterns could benefit from MPI Partitioned
Analyzed MPI Partitioned with a range of different metrics

PPRL / CEASER BID "23 23 /2

Conclusion And Future Work

. . Queens
» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively
We proposed an intra-socket multi-path point-to-point MPI collective

» Evaluated with different benchmarks for each layer of the software stack
» For Deep Learning applications we see up to 3.42x speedup

» Benchmarking for MPI-Partitioned Communication

We provide the first MPI Partitioned Micro-Benchmark Suite
Showed what communication patterns could benefit from MPI Partitioned
Analyzed MPI Partitioned with a range of different metrics

» Compare across different MPI implementations

PPRL / CEASER BID 23 23 /26

Conclusion And Future Work

. . Queens
» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively
We proposed an intra-socket multi-path point-to-point MPI collective

» Evaluated with different benchmarks for each layer of the software stack
» For Deep Learning applications we see up to 3.42x speedup

» Benchmarking for MPI-Partitioned Communication

We provide the first MPI Partitioned Micro-Benchmark Suite
Showed what communication patterns could benefit from MPI Partitioned
Analyzed MPI Partitioned with a range of different metrics

» Compare across different MPI implementations

» Porting Applications to MPI Partitioned based upon benchmarking results

PPRL / CEASER BID 23 23 /2

Conclusion And Future Work

. . Queens
» Benchmarking for MPI-Based Deep Learning

Deep Learning workloads use MPI_Allreduce collective with large messages
extensively
We proposed an intra-socket multi-path point-to-point MPI collective

» Evaluated with different benchmarks for each layer of the software stack
» For Deep Learning applications we see up to 3.42x speedup

» Benchmarking for MPI-Partitioned Communication

We provide the first MPI Partitioned Micro-Benchmark Suite
Showed what communication patterns could benefit from MPI Partitioned
Analyzed MPI Partitioned with a range of different metrics

» Compare across different MPI implementations
» Porting Applications to MPI Partitioned based upon benchmarking results
» MPI Partitioned Collectives

PPRL / CEASER BID "23 23 /2

Thank You!

PPRL / CEASER BID 23 24 /26

Acknowledgements

ScCiNet

ADVANCED RESEARCH COMPUTING at the UNIVERSITY OF TORONTO

Digital Research
Alliance of Canada

PPRL / CEASER

NSERC
CRSNG

Alliance de recherche
numérique du Canada

BID 23

25/26

E

E

Y. H. Temugin, A. Sojoodi, P. Alizadeh, and A. Afsahi, “Efficient Multi-Path
NVLink/PCle-Aware UCX based Collective Communication for Deep Learning,” in 2021 IEEE
Symposium on High-Performance Interconnects (HOTI), 2021, pp. 25-34.

Y. H. Temugin, A. H. Sojoodi, P. Alizadeh, B. Kitor, and A. Afsahi, “Accelerating Deep Learning
Using Interconnect-Aware UCX Communication for MPI Collectives,” IEEE Micro, vol. 42,
no. 2, pp. 68-76, 2022.

Y. H. Temucin, R. E. Grant, and A. Afsahi, “Micro-Benchmarking MPI Partitioned
Point-to-Point Communication,” in Proceedings of the 51st International Conference on Parallel
Processing, ser. ICPP "22. New York, NY, USA: Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1145/3545008.3545088

PPRL / CEASER BID 23 26 /26

https://doi.org/10.1145/3545008.3545088

	Introduction
	Open MPI + UCX

	Benchmarking for MPI-Based Deep Learning
	RMA and Collective Communication Design
	Micro-Benchmarks
	Application Results

	Benchmarking for MPI-Partitioned Communication
	MPI Partitioned Point-to-Point Communication
	Overhead
	Perceived Bandwidth
	Sweep3D Communication Pattern

	Conclusion And Future Work

