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Drivers of Modern HPC Cluster and Cloud Computing Architecture

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

– Single Root I/O Virtualization (SR-IOV)

• Solid State Drives (SSDs), NVM, Parallel Filesystems, Object Storage Clusters

• Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

High Performance Interconnects –

InfiniBand (with SR-IOV)

<1usec latency, 200Gbps Bandwidth>

Multi-/Many-core 

Processors

Cloud CloudSDSC Comet TACC Stampede

Accelerators / Coprocessors 

high compute density, high 

performance/watt

>1 TFlop DP on a chip 

SSD, NVMe-SSD, NVRAM
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Interconnects and Protocols for Datacenters
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Communication in the Memory Semantics (RDMA Model)

InfiniBand Device

Memory Memory

InfiniBand Device

CQ
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Memory
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Send WQE contains information about the 

send buffer (multiple segments) and the 

receive buffer (single segment)

Processor Processor
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Segment

Memory

Segment

Initiator processor is involved only to:

1. Post send WQE

2. Pull out completed CQE from the send CQ

No involvement from the target processor
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• Challenges for Accelerating Big Data Processing 

• Accelerating Big Data and Deep Learning Systems on RDMA-
enabled High-Performance Interconnects
– RDMA-enhanced Designs for Hadoop, Spark, and TensorFlow

• Accelerating Big Data Processing on High-Performance Storage
– SSD-assisted Hybrid Memory for RDMA-based Memcached

• Challenges in Designing Benchmarks for Big Data Processing and 
Deep Learning
– OSU HiBD Benchmarks

• Conclusion and Q&A

Presentation Outline

5HPC Asia (Jan ‘19) 



How Can High-Performance Interconnect and Storage Architectures Benefit 
Big Data and Deep Learning Applications?

Bring HPC, Big Data processing, and Deep 
Learning into a “convergent trajectory”!

What are the major 
bottlenecks in current Big 

Data processing and 
Deep Learning 

middleware (e.g. Hadoop, 
Spark)?

Can the bottlenecks be 
alleviated with new 

designs by taking 
advantage of HPC 

technologies?

Can RDMA-enabled 
high-performance 

interconnects
benefit Big Data 

processing and Deep 
Learning?

Can HPC Clusters with 
high-performance 

storage systems (e.g. 
SSD, parallel file 

systems) benefit Big 
Data and Deep Learning 

applications?

How much 
performance benefits

can be achieved 
through enhanced 

designs?

How to design 
benchmarks for  
evaluating the 

performance of Big Data 
and Deep Learning 
middleware on HPC 

clusters?
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• RDMA for Apache Spark 

• RDMA for Apache Hadoop 3.x (RDMA-Hadoop-3.x)

• RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)
– Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions

• RDMA for Apache Kafka

• RDMA for Apache HBase

• RDMA for Memcached (RDMA-Memcached)

• RDMA for Apache Hadoop 1.x (RDMA-Hadoop)

• OSU HiBD-Benchmarks (OHB)
– HDFS, Memcached, HBase, and Spark Micro-benchmarks

• http://hibd.cse.ohio-state.edu

• Users Base: 300 organizations from 35 countries

• More than 28,900 downloads from the project site

The High-Performance Big Data (HiBD) Project
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Available for InfiniBand and RoCE
Also run on Ethernet

Available for x86 and OpenPOWER

Support for Singularity and Docker

http://hibd.cse.ohio-state.edu/


• Challenges for Accelerating Big Data Processing 

• Accelerating Big Data and Deep Learning Systems on RDMA-
enabled High-Performance Interconnects
– RDMA-enhanced Designs for Hadoop, Spark, and TensorFlow

• Accelerating Big Data Processing on High-Performance Storage
– SSD-assisted Hybrid Memory for RDMA-based Memcached

• Challenges in Designing Benchmarks for Big Data Processing and 
Deep Learning
– OSU HiBD Benchmarks

• Conclusion and Q&A

Presentation Outline
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Bottlenecks in Data Computing Frameworks (e.g., Hadoop, Spark)

Disk Operations

• Map and Reduce Tasks carry out the total job execution
– Map tasks read from HDFS, operate on it, and write the intermediate data to local disk
– Reduce tasks get these data by shuffle from TaskTrackers, operate on it and write to HDFS

• Communication in the pipeline
– Shuffle phase uses HTTP over Java Sockets
– Replication phase uses Java Sockets

Bulk Data Transfer
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• Design Features
– Plugin-based design
– SEDA-based architecture
– Non-blocking RDMA-based 

in-memory merge pipeline
– Dynamic connection 

management and sharing
– InfiniBand/RoCE support
– OpenPOWER support

Design Overview of Spark with RDMA

X. Lu, M. W. Rahman, N. Islam, D. Shankar, and D. K. Panda, Accelerating Spark with RDMA for Big Data Processing: Early Experiences, HotI, 2014

X. Lu, D. Shankar, S. Gugnani, and D. K. Panda, High-Performance Design of Apache Spark with RDMA and Its Benefits on Various Workloads, IEEE BigData, 2016

X. Lu, H. Shi, H. Javed, R. Biswas, and D. K. Panda, Characterizing Deep Learning over Big Data (DLoBD) Stacks on RDMA-capable Networks, HotI, 2017

X. Lu,  H. Shi, D. Shankar, and D. K. Panda, Performance Characterization and Acceleration of Big Data Workloads on OpenPOWER System, IEEE BigData, 2017

X. Lu, H. Shi, R. Biswas, H. Javed, and D. K. Panda, DLoBD: A Comprehensive Study of Deep Learning over Big Data Stacks on HPC Clusters, IEEE Trans. on MSCS, 2018

Spark Core

RDMA Capable Networks
(IB,  iWARP, RoCE ..)

Apache Spark Benchmarks/Applications/Libraries/Frameworks

1/10/40/100 GigE, IPoIB  Network

Java Socket Interface Java Native Interface (JNI)

Native RDMA-based Comm. Engine

Shuffle Manager (Sort, Hash, Tungsten-Sort)

Block Transfer Service (Netty, NIO, RDMA-Plugin)

Netty
Server

NIO
Server

RDMA
Server

Netty
Client

NIO
Client

RDMA
Client
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Comparison of Different CNNs

Canziani, Alfredo and Paszke, Adam and Culurciello, Eugenio, “An analysis of deep neural network models for practical applications” in arXiv preprint 
arXiv:1605.07678, 2016
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Evaluation of OSU-TensorFlow-RDMA: Resnet152
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Resnet152 Evaluation on Cluster A (Higher Better); TotalBatchSize = (BatchSize/GPU)×NUMofGPUs

• AR-gRPC accelerates TensorFlow by 62% (batch size 8/GPU) more compared to default gRPC on 4 

nodes 

• AR-gRPC improves Resnet152 performance by 32% (batch size 32/GPU) to 147% on 8 nodes

• AR-gRPC incurs a maximum speedup of 3x (55 vs 18 images) compared to default gRPC 12 nodes

• Even for higher batch size of 32/GPU (total 352) AR-gRPC improves TensorFlow 

performance by 82% 12 nodes

• AR-gRPC processes a maximum of 40%, 35%, and 30% more images, on 4, 8, and 12 nodes,  

respectively, than Verbs 

• AR-gRPC achieves a maximum speedup of 1.61x, 3.3x and 4.5x compared to MPI channel on 4, 8, 

and 12 nodes, respectively

4 Nodes 8 Nodes 12 Nodes
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R. Biswas, X. Lu, and D. K. Panda, Accelerating TensorFlow with Adaptive RDMA-based gRPC, HiPC, 2018.
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Co-Design Data Computing Frameworks with RDMA

• HDFS Accelerations with RDMA-capable Networks and High-Speed Storage
• N. Islam, X. Lu, W. Rahman, and D. K. Panda, SOR-HDFS: A SEDA-based Approach to Maximize Overlapping in 

RDMA-Enhanced HDFS,  HPDC '14,  June 2014
• N. Islam, M. W. Rahman, X. Lu, D. Shankar, and D. K. Panda, Performance Characterization and Acceleration of 

In-Memory File Systems for Hadoop and Spark Applications on HPC Clusters, IEEE BigData, 2015
• N. Islam, M. W. Rahman, X. Lu, and D. K. Panda, Efficient Data Access Strategies for Hadoop and Spark on HPC 

Cluster with Heterogeneous Storage, IEEE BigData, 2016

• Hadoop MapReduce Accelerations with RDMA-capable Networks and Lustre
• M. W. Rahman, X. Lu, N. S. Islam, and D. K. Panda, HOMR: A Hybrid Approach to Exploit Maximum Overlapping 

in MapReduce over High Performance Interconnects, ICS, June 2014
• M. W. Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar, and D. K. Panda, High Performance Design of YARN 

MapReduce on Modern HPC Clusters with Lustre and RDMA, IPDPS, May 2015
• M. W. Rahman, N. S. Islam, X. Lu, and D. K. Panda, A Comprehensive Study of MapReduce over Lustre for 

Intermediate Data Placement and Shuffle Strategies on HPC Clusters, TPDS, 2017

• Memcached-Accelerations with RDMA-capable Networks
• D. Shankar, X. Lu, D. K. Panda, High-Performance Hybrid Key-Value Store on Modern Clusters with RDMA 

Interconnects and SSDs: Non-blocking Extensions, Designs,  and Benefits, IPDPS, 2016 
• D. Shankar, X. Lu, D. K. Panda, High-Performance and Resilient Key-Value Store with Online Erasure Coding for 

Big Data Workloads, ICDCS, 2017
• X. Lu, D. Shankar, D. K. Panda, Scalable and Distributed Key-Value Store-based Data Management Using RDMA-

Memcached, TCDE, 2017

• More: Spark, Kafka, HBase, gRPC/TensorFlow Accelerations with RDMA-
capable Networks 
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• Challenges for Accelerating Big Data Processing 

• Accelerating Big Data and Deep Learning Systems on RDMA-
enabled High-Performance Interconnects
– RDMA-enhanced Designs for Hadoop, Spark, and TensorFlow

• Accelerating Big Data Processing on High-Performance Storage
– SSD-assisted Hybrid Memory for RDMA-based Memcached

• Challenges in Designing Benchmarks for Big Data Processing and 
Deep Learning
– OSU HiBD Benchmarks

• Conclusion and Q&A

Presentation Outline
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Overview of SSD-Assisted Hybrid RDMA-Memcached Design

• Design Features
• Hybrid slab allocation and 

management for higher data 
retention

• Log-structured sequence of 
blocks flushed to SSD

• SSD fast random read to achieve 
low latency object access

• Uses LRU to evict data to SSD

17

D. Shankar, X. Lu, J. Jose, M. W. Rahman, N. Islam, and D. 
K. Panda, Can RDMA Benefit On-Line Data Processing 
Workloads with Memcached and MySQL, ISPASS’15

D. Shankar, X. Lu, M. W. Rahman, N. Islam, and D. K. 
Panda, Benchmarking Key-Value Stores on High-
Performance Storage and Interconnects for Web-Scale 
Workloads, IEEE BigData’15

X. Lu, D. Shankar, and D. K. Panda, Scalable and 
Distributed Key-Value Store-based Data Management 
Using RDMA-Memcached, TCDE‘17  (Invited Paper)
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– Memcached latency test with Zipf distribution, server with 1 GB memory, 32 KB key-value 

pair size, total size of data accessed is 1 GB (when data fits in memory) and 1.5 GB (when 

data does not fit in memory) 

– When data fits in memory: RDMA-Mem/Hybrid gives 5x improvement over IPoIB-Mem

– When data does not fix in memory: RDMA-Hybrid gives 2x-2.5x over IPoIB/RDMA-Mem

Performance Evaluation on SDSC Comet (IB FDR + SATA/NVMe SSDs)

18
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– RDMA-Accelerated Communication  for 
Memcached Get/Set

– Hybrid ‘RAM+SSD’ slab management for 
higher data retention

– Non-blocking API extensions 

• memcached_(iset/iget/bset/bget/te
st/wait)

• Achieve near in-memory speeds 
while hiding bottlenecks of network 
and SSD I/O

• Ability to exploit
communication/computation overlap

• Optional buffer re-use guarantees
– Adaptive slab manager with different I/O 

schemes for higher throughput. 

Accelerating Hybrid Memcached with RDMA, Non-blocking Extensions and SSDs

D. Shankar, X. Lu, N. S. Islam, M. W. Rahman, and D. K. Panda, High-Performance Hybrid Key-Value Store on Modern Clusters with 
RDMA Interconnects and SSDs: Non-blocking Extensions, Designs, and Benefits, IPDPS, May 2016
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Blocking API Flow Non-Blocking API Flow
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– Data does not fit in memory: Non-blocking Memcached Set/Get API Extensions can achieve

• >16x latency improvement vs. blocking API over RDMA-Hybrid/RDMA-Mem w/ penalty

• >2.5x throughput improvement vs. blocking API over default/optimized RDMA-Hybrid

– Data fits in memory: Non-blocking Extensions perform similar to RDMA-Mem/RDMA-Hybrid and 

>3.6x improvement over IPoIB-Mem 

Performance Evaluation with Non-Blocking Memcached API
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• Challenges for Accelerating Big Data Processing 

• Accelerating Big Data and Deep Learning Systems on RDMA-
enabled High-Performance Interconnects
– RDMA-enhanced Designs for Hadoop, Spark, and TensorFlow

• Accelerating Big Data Processing on High-Performance Storage
– SSD-assisted Hybrid Memory for RDMA-based Memcached

• Challenges in Designing Benchmarks for Big Data Processing and 
Deep Learning
– OSU HiBD Benchmarks

• Conclusion and Q&A

Presentation Outline
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Big Data and Deep Learning Middleware
(HDFS, MapReduce, HBase, Spark, Memcached, TensorFlow)

Networking Technologies
(InfiniBand, 1/10/40GigE

and Intelligent NICs)

Storage Technologies
(HDD and SSD)

Programming Models
(Sockets)

Applications

Commodity Computing System 
Architectures

(Multi- and Many-core 
architectures and accelerators)

Other Protocols?

Communication and I/O Library

Point-to-Point
Communication

QoS

Threaded Models
and Synchronization

Fault-ToleranceI/O and File Systems

Virtualization

Benchmarks

RDMA Protocols

Challenges in Benchmarking of RDMA-based Designs

Current 
Benchmarks

No Benchmarks

Correlation?
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• The current benchmarks provide some performance 
behavior

• However, do not provide any information to the 
designer/developer on:
– What is happening at the lower-layer?

– Where the benefits are coming from?

– Which design is leading to benefits or bottlenecks?
– Which component in the design needs to be changed and what will 

be its impact?

– Can performance gain/loss at the lower-layer be correlated to the 
performance gain/loss observed at the upper layer?   

Are the Current Benchmarks Sufficient for Big Data 
Management and Processing?
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Big Data and Deep Learning Middleware
(HDFS, MapReduce, HBase, Spark, Memcached, TensorFlow)

Networking Technologies
(InfiniBand, 1/10/40GigE

and Intelligent NICs)

Storage Technologies
(HDD and SSD)

Programming Models
(Sockets)

Applications

Commodity Computing System 
Architectures

(Multi- and Many-core 
architectures and accelerators)

Other Protocols?

Communication and I/O Library

Point-to-Point
Communication

QoS

Threaded Models
and Synchronization

Fault-ToleranceI/O and File Systems

Virtualization

Benchmarks

RDMA Protocols

Iterative Process – Requires Deeper Investigation and 
Design for Benchmarking Next Generation Big Data 
Systems and Applications 

Applications-
Level 

Benchmarks

Micro-
Benchmarks
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• Evaluate the performance of standalone HDFS 

• Five different benchmarks

– Sequential Write Latency (SWL)

– Sequential or Random Read Latency (SRL or RRL)

– Sequential Write Throughput (SWT)

– Sequential Read Throughput (SRT)

– Sequential Read-Write Throughput (SRWT)

OSU HiBD Micro-Benchmark (OHB) Suite - HDFS

Benchmark File 
Name

File 
Size

HDFS
Parameter

Readers Writers Random/
Sequential 

Read

Seek 
Interval

SWL √ √ √

SRL/RRL √ √ √ √ √ (RRL)

SWT √ √ √

SRT √ √ √

SRWT √ √ √ √

N. S. Islam, X. Lu, M. W. Rahman, J. Jose, and D. 
K. Panda, A Micro-benchmark Suite for 
Evaluating HDFS Operations on Modern 
Clusters, Int'l Workshop on Big Data 
Benchmarking (WBDB '12), December 2012.
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• Evaluate the performance of stand-alone MapReduce

• Does not require or involve HDFS or any other distributed file system

• Models shuffle data patterns in real-workload Hadoop application workloads
• Considers various factors that influence the data shuffling phase

– underlying network configuration, number of map and reduce tasks, intermediate shuffle 
data pattern, shuffle data size etc.

• Two different micro-benchmarks based on generic intermediate shuffle 
patterns

– MR-AVG: intermediate data is evenly distributed (or approx. equal) among 
reduce tasks

• MR-RR  i.e., round-robin distribution and MR-RAND i.e., pseudo-random distribution

– MR-SKEW: intermediate data is unevenly distributed among reduce tasks
• Total number of shuffle key/value pairs, max% per reducer, min% per reducer to 

configure skew

OSU HiBD Micro-Benchmark (OHB) Suite - MapReduce

D. Shankar, X. Lu, M. W. Rahman, N. Islam, and D. K. Panda, A Micro-Benchmark Suite for Evaluating Hadoop MapReduce on High-
Performance Networks, BPOE-5 (2014)

D. Shankar, X. Lu, M. W. Rahman, N. Islam, and D. K. Panda, Characterizing and benchmarking stand-alone Hadoop MapReduce on modern 
HPC clusters, The Journal of Supercomputing (2016)
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• Evaluates the performance of stand-alone Memcached in different modes

• Default API Latency benchmarks for Memcached in-memory mode
– SET Micro-benchmark: Micro-benchmark for memcached set operations

– GET Micro-benchmark: Micro-benchmark for memcached get operations

– MIX Micro-benchmark: Micro-benchmark for a mix of memcached set/get 
operations (Read:Write ratio is 90:10)

• Latency benchmarks for Memcached hybrid-memory mode 

• Non-Blocking API Latency Benchmark for Memcached (both in-memory and 
hybrid-memory mode)

• YCSB extension for RDMA-Memcached

• Calculates average latency of Memcached operations in different modes

OSU HiBD Micro-Benchmark (OHB) Suite - Memcached

D. Shankar, X. Lu, M. W. Rahman, N. Islam, and D. K. Panda, Benchmarking Key-Value Stores on High-
Performance Storage and Interconnects for Web-Scale Workloads, IEEE International Conference on Big Data 
(IEEE BigData ‘15), Oct 2015
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Design of TF-gRPC-Bench Micro-benchmark Suite 

TF-gRPC-Bench Deployment

• Deploys in Parameter Server architecture to 
exactly model the distributed TensorFlow 
communication pattern

• Three different benchmarks to measure –
• Point-to-Point latency
• Point-to-Point Bandwidth
• Parameter Server Throughput

• Supports both serialized and non-serialized 
mode of payload transfer

• Written using gRPC’s C++ language binding 
API’s

• Uses gRPC’s core C APIs directly  to avoid any 
serialization overhead

• Payload generation Schemes:
• Uniform 
• Random
• Skew

R. Biswas, X. Lu, and D. K. Panda, Designing a Micro-Benchmark Suite to Evaluate gRPC for TensorFlow: Early Experiences, BPOE-9, 
Mar 2018. 
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• Discussed communication and I/O challenges in accelerating Big 
Data and Deep Learning systems

• Presented initial designs to take advantage of InfiniBand/RDMA 
and high-performance storage architectures for Hadoop, Spark, 
Memcached, TensorFlow, and many others

• Presented challenges in designing benchmarks

• Results are promising 

• Many other open issues need to be solved 

• Will enable Big Data and Deep Learning community to take 
advantage of modern HPC technologies to carry out their 
analytics in a fast and scalable manner 

Concluding Remarks
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The 5th International Workshop on 
High-Performance Big Data and Cloud Computing (HPBDC)

In conjunction with IPDPS’19, Rio de Janeiro, Brazil, Monday, May 20th, 2019

HPBDC 2018 was held in conjunction with IPDPS’18

http://web.cse.ohio-state.edu/~luxi/hpbdc2018

HPBDC 2017 was held in conjunction with IPDPS’17

http://web.cse.ohio-state.edu/~luxi/hpbdc2017

HPBDC 2016 was held in conjunction with IPDPS’16

http://web.cse.ohio-state.edu/~luxi/hpbdc2016

HPBDC 2015 was held in conjunction with ICDCS’15

http://web.cse.ohio-state.edu/~luxi/hpbdc2015

Deadline Important Date

Abstract (Optional) January 15th, 2019

Paper Submission February 1st, 2019

Acceptance notification March 1st, 2019

Camera-Ready deadline March 15th, 2019
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luxi@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~luxi

Thank You!

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

31

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/
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